Skip to main content
Log in

Magnetoelectric Multilayer Gallium Arsenide–Nickel–Tin–Nickel Structures

  • PHYSICOCHEMICAL PRINCIPLES OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The production process is considered, and the results of a theoretical and experimental study of the magnetoelectric effect in a multilayer structure obtained by galvanic deposition of alternating layers of nickel and tin onto a gallium arsenide substrate are presented. It is experimentally found that the use of tin as an intermediate layer in a multilayer structure decreases the mechanical stresses arising from the inconsistency of the lattice parameters at the nickel/gallium arsenide interface, which makes it possible to obtain high-quality multilayer structures with the thickness of the nickel layer of about 100 μm. On the basis of the joint solution of the equations of elastodynamics and electrostatics for the magnetostriction, piezoelectric, and buffer layers, an expression for the magnetoelectric voltage coefficient is obtained. It is theoretically shown and experimentally confirmed that the frequency dependence of the magnetoelectric coefficient has a resonant character, and the value of the resonant frequency gradually decreases with the growth in the number of layers from the value corresponding to the natural oscillation frequency of a plate made of gallium arsenide, approaching the value corresponding to the natural oscillation frequency of a plate consisting of a layer of nickel and tin, the thickness of which is equal to double the thickness of the layer of nickel. It is experimentally found that, in the region of electromechanical resonance, the obtained structures have a high quality factor Q ≅ 1000, which is more than 20-fold higher than the quality factor of the magnetoelectric structures fabricated by gluing, and have good adhesion between the layers. These structures are promising for creating devices based on the magnetoelectric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Pyatakov, A.P. and Zvezdin, A.K., Magnetoelectric and multiferroic media, Phys.-Usp., 2012, vol. 55, no. 6, pp. 557–581.

    Article  CAS  Google Scholar 

  2. Zhai, J., Gao, J., De Vreugd, C., Li, J., Viehland, D., Filippov, A.V., Bichurin, M.I., Drozdov, D.V., Semenov, G.A., and Dong, S.X., Magnetoelectric gyrator, Eur. Phys. J. B, 2009, vol. 71, pp. 383–385.

    Article  CAS  Google Scholar 

  3. Nikitin, A.O., Leont’ev, V.S., Petrov, R.V., and Mel’nichuk, D.G., Magnetoelectric current sensor with improved circuit of the signal processing, Vestn. Novgorod. Gos. Univ., 2015, no. 6 (89), pp. 90–94.

  4. Filippov, D.A., Galkina, T.A., Laletin, V.M., and Srinivasan, G., Voltage transformer based on inverse magnetoelectric effect, Tech. Phys. Lett., 2012, vol. 38, no. 1, pp. 93–95.

    Article  CAS  Google Scholar 

  5. Antonenkov, O.V. and Filippov, D.A., Electric-field-controlled magnetoelectric microwave attenuator, Tech. Phys. Lett., 2007, vol. 33, no. 9, pp. 752–754.

    Article  CAS  Google Scholar 

  6. Lou, J., Reed, D., Liu, M., and Sun, N.X., Electrostatically tunable magnetoelectric inductors with large inductance tenability, Appl. Phys. Lett., 2009, vol. 94, p. 112508.

    Article  Google Scholar 

  7. Zhang, J., Chen, D., Filippov, D.A., Li, K., Zhang, Q., Jiang, L., Zhu, W., Cao, L., and Srinivasan, G., Bidirectional tunable ferrite-piezoelectric trilayer magnetoelectric inductors, Appl. Phys. Lett., 2018, vol. 113, p. 113502.

    Article  Google Scholar 

  8. Bichurin, M.I. and Filippov, D.A., The microscopic mechanism of the magnetoelectric effect in the microwave range, Ferroelectrics, 1997, vol. 204, nos. 1–4, pp. 225–232.

  9. Laletin, V.M. and Srinivasan, G., Magnetoelectric effects in composites of nickel ferrite and barium lead zirconate titanate, Ferroelectrics, 2002, vol. 280, pp. 177–185.

    Article  CAS  Google Scholar 

  10. Srinivasan, G., Rasmussen, E.T., Gallegos, J., Srinivasan, R., Bokhan, Yu. I., and Laletin, V.M., Novel magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides, Phys. Rev. B, 2001, vol. 64, p. 214408.

    Article  Google Scholar 

  11. Fetisov, Y.K., Petrov, V.M., and Srinivasan, G., Inverse magnetoelectric effects in a ferromagnetic-piezoelectric layered structure, J. Mater. Res., 2007, vol. 22, pp. 2074–2080.

    Article  CAS  Google Scholar 

  12. Fetisov, Y.K., Kamentsev, K.E., Chashin, D.V., Fe-tisov, L.Y., and Srinivasan, G., Inverse magnetoelectric effects in a ferro-magnetic piezoelectric layered structure, J. Appl. Phys., 2009, vol. 105, p. 123918.

    Article  Google Scholar 

  13. Gridnev, S.A., Kalinin, Yu.E., Kalgin, A.V., and Gri-gor’ev, E.S., Direct magnetoelectric effect in threelayer Fe0.45Co0.45Zr0.1–PbZr0.53Ti0.47O3–Fe0.45Co0.45Zr0.1 composites, Phys. Solid State, 2015, vol. 57, no. 7, pp. 1372–1376.

    Article  CAS  Google Scholar 

  14. Laletin, V.M., Stognii, A.I., Novitskii, N.N., and Poddubnaya, N.N., The magnetoelectric effect in structures based on metallized gallium arsenide substrates, Tech. Phys. Lett., 2014, vol. 40, no. 11, pp. 969–971.

    Article  CAS  Google Scholar 

  15. Filippov, D.A., Firsova, T.O., and Laletin, V.M., The magnetoelectric effect in nickel–GaAs–nickel structures, Tech. Phys. Lett., 2017, vol. 43, no. 3, pp. 313–315.

    Article  CAS  Google Scholar 

  16. Filippov, D.A., Galichyan, T.A., and Laletin, V.M., Influence of an interlayer bonding on the magnetoelectric effect in the layered magnetostrictive-piezoelectric structure, Appl. Phys. A., 2014, vol. 116, pp. 2167–2171.

    Article  CAS  Google Scholar 

  17. Filippov, D.A., Laletin, V.M., and Galichyan, T.A., Magnetoelectric effect in bilayer magnetostrictive-piezoelectric structure. Theory and experiment, Appl. Phys. A., 2014, vol. 115, pp. 1087–1091.

    Article  CAS  Google Scholar 

  18. Filippov, D.A., Laletin, V.M., and Galichyan, T.A., Magnetoelectric effect in a magnetostrictive-piezoelectric bilayer structure, Phys. Solid State, 2013, vol. 55, no. 9, pp. 1840–1845.

    Article  CAS  Google Scholar 

  19. Filippov, D.A., Laletin, V.M., Firsova, T.O., and Antonenkov, O.V., Manufacturing techniques and magnetoelectric properties of lead zirconate titanate–nickel structures, Vestn. Novgorod. Gos. Univ., 2015, no. 6 (89), pp. 100–104.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Filippov, I. N. Manicheva or V. M. Laletin.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, D.A., Manicheva, I.N. & Laletin, V.M. Magnetoelectric Multilayer Gallium Arsenide–Nickel–Tin–Nickel Structures. Inorg. Mater. Appl. Res. 11, 257–263 (2020). https://doi.org/10.1134/S2075113320020112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020112

Keywords:

Navigation