Skip to main content
Log in

Preparation of Hybrid Nanocomposites Based on Nanoscale Cellulose and Magnetic Nanoparticles with Photocatalytic Properties

  • MATERIALS FOR HUMAN LIFE SUPPORT AND ENVIRONMENTAL PROTECTION
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A low-temperature solution-based method for the production of hybrid organic-inorganic nanocomposite films based on nanoscale cellulose and magnetic iron oxide nanoparticles (CNC/Fe3O4) was developed. The obtained nanomaterials were investigated by scanning electron microscopy (SEM), dynamic light scattering (DLS), energy dispersive spectroscopy analysis (EDS) and X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), and FT-IR spectroscopy. The formation of CNC/Fe3O4 nanocomposite was confirmed by the XRD analysis. According to SEM images, Fe3O4 nanoparticles are uniformly distributed on the surface of nanocellulose. The obtained nanocomposite material exhibits photocatalytic activity under visible light and UV irradiation in the rhodamine B degradation reaction. Thus, the developed biocompatible and environmentally friendly hybrid nanomaterials have great prospects of practical application in the field of biomedicine and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hood, M., Mari, M., and Muñoz-Espí, R., Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles, Materials, 2014, vol. 7, pp. 4057–4087.

    Google Scholar 

  2. Sanchez, C., Julián, B., Belleville, P., and Popall, M., Applications of hybrid organic-inorganic nanocomposites, J. Mater. Chem., 2005, vol. 15, pp. 3559–3592.

    Article  CAS  Google Scholar 

  3. Wicklein, B. and Salazar-Alvarez, G., Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials, J. Mater. Chem. A, 2013, vol. 1, pp. 5469–5478.

    Article  CAS  Google Scholar 

  4. Häffner, S.M. and Malmsten, H.M., Membrane interactions and antimicrobial effects of inorganic nanoparticles, Adv. Colloid Interface Sci., 2017, vol. 248, pp. 105–128.

    Article  Google Scholar 

  5. Azizi, S., Ahmad, M.B., Hussein, M.Z., Ibrahim, N.A., and Namvar, F., Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO–Ag multifunctional nanosized filler, Int. J. Nanomed., 2014, vol. 9, pp. 1909–1917.

    Article  Google Scholar 

  6. Cowger, A., Yang, Y., Rink, D.E., et al., Protein-adsorbed magnetic-nanoparticle-mediated assay for rapid detection of bacterial antibiotic resistance, Bioconjugate Chem., 2017, vol. 28, pp. 890–896.

    Article  CAS  Google Scholar 

  7. Fernandes, E.M., Pires, R.A., Mano, J.F., and Reis, R.L., Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field, Prog. Polym. Sci., 2013, vol. 38, pp. 1415–1441.

    Article  CAS  Google Scholar 

  8. Allaker, R.P. and Ren, G., Potential impact of nanotechnology on the control of infectious disease, Trans. R. Soc. Trop. Med. Hyg., 2008, vol. 102, pp. 1–2.

    Article  Google Scholar 

  9. Nagappan, S., Choi, M.-C., Sung, G., Park, S.S., Moorthy, M.S., Chu, S.-W., Lee, W.-K., and Ha, C.-S., Highly transparent, hydrophobic fluorinated polymethylsiloxane/silica organic-inorganic hybrids for anti-stain coating, Macromol. Res., 2013, vol. 21, pp. 669–680.

    Article  CAS  Google Scholar 

  10. Samiey, B., Cheng, C.-H., and Wu, J., Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review, Materials, 2014, vol. 7, pp. 673–726.

    Book  Google Scholar 

  11. Guise, C. and Fangueiro, R., Biomedical applications of nanocellulose, in Natural Fibres. Advances in Science and Technology towards Industrial Applications: From Science to Market, Fangueiro, R. and Rana, S., Eds., Dordrecht: Springer-Verlag, 2016, no. 12, pp. 155–169.

  12. Lin, N. and Dufresne, A., Nanocellulose in biomedicine: current status and future prospect, Eur. Polym. J., 2014, vol. 59, pp. 302–325.

    Article  CAS  Google Scholar 

  13. Wei, H., Rodriguez, K., Renneckar, S., and Vikesland, P.J., Environmental science and engineering applications of nanocellulose-based nanocomposites, Environ. Sci.: Nano, 2014, vol. 1, pp. 302–316.

    CAS  Google Scholar 

  14. Islam, C.M.S., Sisler, L. Chen, J, and Tam, K.C., Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications, J. Mater. Chem. B, 2018, vol. 6, pp. 864–883.

    Article  CAS  Google Scholar 

  15. Mikulcová, V., Bordes, R., and Kašpárková, V., On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles, Food Hydrocolloids, 2016, vol. 61, pp. 780–792

  16. Cunha, A.G., Mougel, J.B., Cathala, B., Berglund, L.A., and Capron, I., Preparation of double pickering emulsions stabilized by chemically tailored nanocelluloses, Langmuir, 2014, vol. 30, pp. 9327–9335.

    Article  CAS  Google Scholar 

  17. Gao, J., Gu, H., and Xu, B., Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications, Acc. Chem. Res., 2009, vol. 42, pp. 1097–1107.

    Article  CAS  Google Scholar 

  18. Sekhon, B.S. and Kamboj, S.R., Inorganic nanomedicine—Part 2, Nanomedicine, 2010, vol. 6, pp. 612–618.

    Article  CAS  Google Scholar 

  19. Huh, A.J. and Kwon, Y.J., “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Control Release, 2011, vol. 156, pp. 128–145.

    Article  CAS  Google Scholar 

  20. Singh, R., Smitha, M.S., and Singh, S.P., The role of nanotechnology in combating multi-drug resistant bacteria, J. Nanosci. Nanotechnol., 2014, vol. 14, pp. 4745–4756.

    Article  CAS  Google Scholar 

  21. Lee, N., Yoo, D., and Ling, D., Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy, Chem. Rev., 2015, vol. 115, pp. 10637–10689.

    Article  CAS  Google Scholar 

  22. Mohammed, L., Gomaa, H.G., Ragab, D., and Zhu, J., Magnetic nanoparticles for environmental and biomedical applications: a review, Particuology, 2017, vol. 30, pp. 1–14.

    Article  CAS  Google Scholar 

  23. Anghel, A.G., Grumezescu A.M., Chirea M., et al., MAPLE fabricated Fe3O4Cinnamomum verum antimicrobial surfaces for improved gastrostomy tubes, Molecules, 2014, vol. 19, pp. 8981–8994.

    Article  Google Scholar 

  24. Galkina, O.L., Ivanov, V., Agafonov, A.V., Seisenbaeva, G.A., and Kessler, V.G., Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications, J. Mater. Chem. B, 2015, vol. 3, pp. 1688–1698.

    Article  CAS  Google Scholar 

  25. Galkina, O.L., Önneby, K., Huang, P., Ivanov, V.K., Agafonov, A.V., Seisenbaeva, G.A., and Kessler, V.G., Antibacterial and photochemical properties of cellulose nanofibers–titania nanocomposites loaded with two different types of antibiotic medicines, J. Mater. Chem. B, 2015, vol. 3, pp. 7125–7134.

    Article  CAS  Google Scholar 

  26. Evdokimova, O.L., Svensson, F.G., Agafonov, A.V., Håkansson, S., Seisenbaeva, G.A., and Kessler, V.G., Hybrid drug delivery patches based on spherical cellulose nanocrystals and colloid titania-synthesis and antibacterial properties, Nanomaterials (Basel, Switz.), 2018, vol. 8, no. 4, p. 228.

  27. Ghaemi, N., Madaeni, S.S., and Daraei, P., Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles, Chem. Eng. J., 2015, vol. 263, pp. 101–112.

    Article  CAS  Google Scholar 

  28. Poletto, M., Ornaghi, H.L., Jr., and Zattera, A.J., Native cellulose: structure, characterization and thermal properties, Materials, 2014, vol. 7, pp. 6105–6119.

    Google Scholar 

  29. Wang, L., Hu, C., and Shao, L., The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int. J. Nanomed., 2017, vol. 12, pp. 1227–1249.

    Article  CAS  Google Scholar 

  30. Wu, W., Wu, Z., Yu, T., Jiang, C., and Kim, W.S., Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Sci. Technol. Adv. Mater., 2015, vol. 16, art. ID 023501.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The investigations were carried out using the equipment of the Upper Volga Regional Center for Physicochemical Studies.

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-33-00807 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. L. Evdokimova, A. D. Fedulova (Savicheva), A. V. Evdokimova, T. V. Kusova or A. V. Agafonov.

Additional information

Translated by S. Efimov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimova, O.L., Fedulova (Savicheva), A.D., Evdokimova, A.V. et al. Preparation of Hybrid Nanocomposites Based on Nanoscale Cellulose and Magnetic Nanoparticles with Photocatalytic Properties. Inorg. Mater. Appl. Res. 11, 371–376 (2020). https://doi.org/10.1134/S2075113320020100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020100

Keywords:

Navigation