Skip to main content
Log in

Effect of Iron Doping on Structural, Magnetic, and Electrical Characteristics of Manganites in La0.7Sr0.3Mn0.9Zn0.1 –xFexO3 (0 ≤ x ≤ 0.1) System

  • GENERAL PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Experimental data on the structure and properties of manganites of La0.7Sr0.3Mn0.9Zn0.1 –xFexO3 (0 ≤ x ≤ 0.1) system synthesized by ceramic processing and annealed under conditions ensuring the achievement of stoichiometric oxygen concentrations are presented. All obtained manganites have a rhombohedral structure. The substitution of iron for zinc leads to an increase in the unit cell volume and average cation–anion distance in the octahedral sublattice, which is determined by the increase in the concentration of Mn3+ ions due to the decrease in the concentration of Mn4+ as a result of charge compensation processes. The angles between the Mn–O–Mn bonds change slightly. Curie point, magnetization, and temperature of the metal–semiconductor transition as a function of the concentration of iron are characterized by the presence of a maximum. The maximum value of the resistance of manganite with x = 0.1 is a factor of 800–1000 higher than the maximum values of the resistance of other samples in the studied range of temperatures. Temperature dependences of magnetic permeability are indicative of the existence of magnetic inhomogeneities in manganites, especially in the samples with x = 0 and 0.1, which may be due to the nonuniform distribution of Zn2+ ions and the presence of ferromagnetic and paramagnetic clusters. These data are in agreement with the results of the investigation of the electron paramagnetic resonance (EPR) spectra containing additional and/or broadened lines. Characteristic features of the dependences of the properties of studied manganites on the concentration of iron are explained by the influence of a series of competing factors, namely, the decrease in the concentration of Mn4+ ions and probability of antiferromagnetic interaction between them, change in the number of disturbed exchange bonds between Mn4+ and Mn3+ ions, and variations of the characteristics of magnetic inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Koroleva, L., Batashev, I., Morozov, A., Balbashov, A., Szymczak, H., and Slavska-Wanniewska, A., Connection of thermopower, magnetothermopower with resistivity and magnetoresistance in manganites with Nd and Sm, EPJ Web Conf., 2018, vol. 185, art. ID 06014. https://doi.org/10.1051/epjconf/201818506014.

  2. Jacobs, R., Booske, J., and Morgan, D., Understanding and controlling the work function of perovskite oxides using density functional theory, Adv. Funct. Mater., 2016, vol. 26, no. 30, pp. 5471–5482. https://doi.org/10.1002/adfm.201600243

    Article  CAS  Google Scholar 

  3. Golenishchev-Kutuzov, A.V., Golenishchev-Kutuzov, V.A., Kalimullin, R.I., and Semennikov, A.V., Influence of Jahn–Teller ordering on the structural and magnetic phase transitions in lightly doped manganites, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 11, pp. 1394–1396. https://doi.org/10.3103/S1062873815110076

    Article  CAS  Google Scholar 

  4. Shlapa, Y., Kulyk, M., Kalita, V., Polek, T., Tovstolytkin, A., Greneche, J.-M., Solopan, S., and Belous, A., Iron-doped (La,Sr)MnO3 manganites as promising mediators of self-controlled magnetic nanohyperthermia, Nanoscale Res. Lett., 2016, vol. 11, no. 24. https://doi.org/10.1186/s11671-015-1223-6

  5. Abdel-Latif, I.A., Rare earth manganites and their applications, J. Phys., 2012, vol. 1, no. 3, pp. 15–31.

    CAS  Google Scholar 

  6. Karpasyuk, V.K., Badelin, A.G., Derzhavin, I.M., and Merkulov, D.I., Systems of manganites with enhanced electromagnetic parameters, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 5, pp. 807–812. https://doi.org/10.1134/S2075113318050143

    Article  Google Scholar 

  7. Karpasyuk, V.K., Badelin, A.G., Smirnov, A.M., Sorokin, V.V., Evseeva, A., Doyutova, E., and Shchepetkin, A.A., N-type current-voltage characteristics of manganites, J. Phys.: Conf. Ser., 2010, vol. 200, pp. 052026–052029. https://doi.org/10.1088/1742-6596/200/5/052026

    Article  CAS  Google Scholar 

  8. Mizusaki, J., Mori, N., Takai, H., Yonemura, Y., Minamiue, H., Tagawa, H., Dokiya, M., Inaba, H., Naraya, K., Sasamoto, T., and Hashimoto, T., Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1 – xSrxMnO3 + d,Solid State Ionics, 2000, vol. 129, pp. 163–177.https://doi.org/10.1016/S0167-2738(99)00323-9

    Article  CAS  Google Scholar 

  9. Musaeva, Z.R., Badelin, A.G., Smirnov, A.M., Karpasyuk, V.K., Ponomarev, V.I., and Shchepetkin, A.A., Effect of oxygen content and nonstoichiometry defects on the phase transformations in manganites of the La0.65Sr0.35Mn1 –x– yNixTiyO3 + γ system, Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 10, pp. 1462–1465. https://doi.org/10.3103/S1062873810100424

    Article  Google Scholar 

  10. Badelin, A.G., Karpasyuk, V.K., Smirnov, A.M., Evseeva, A.V., Firsova, E.P., and Estemirova, S.K., Phase transitions in manganites with substitution of divalent ions for manganese, Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 2, pp. 100–103. https://doi.org/10.3103/S1062873814020075

    Article  CAS  Google Scholar 

  11. Karpasyuk, V.K., Badelin, A.G., Derzhavin, I.M., Merkulov, D.I., and Smirnov, A.M., Electromagnetic parameters of multicomponent manganites depending on combination and electronic configuration of substituents for manganese, Int. J. Appl. Eng. Res., 2015, vol. 10, no. 21, pp. 42746–42749.

    Google Scholar 

  12. Ahn, K.H., Wu, X.W., Liu, K., and Chien, C.L., Magnetic properties and colossal magnetoresistance of La(Ca) MnO3 materials doped with Fe, Phys. Rev. B, 1996, vol. 54, no. 21, pp. 15299–15302. https://doi.org/10.1103/PhysRevB.54.15299

    Article  CAS  Google Scholar 

  13. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 1976, vol. 32, pp. 751–767.https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  14. Ajan, A., Venkataramani, N., Prasad, S., Shringi, S.N., Nigam, A.K., and Pinto, R., Effect of low Fe doping in La0.8Sr0.2MnO3, J. Appl. Phys., 1998, vol. 83, no. 11, pp. 7169–7170. https://doi.org/10.1063/1.367629

    Article  CAS  Google Scholar 

  15. Yanchevskii, O.Z., V’yunov, O.I., Belous, A.G., and Tovstolytkin, A.I., Crystallographic, electrical, and magnetic properties of the system La0.7Sr0.3Mn1 −xFexO3, Low Temp. Phys., 2006, vol. 32, no. 2, pp. 134–138. https://doi.org/10.1063/1.2171513

    Article  CAS  Google Scholar 

  16. V’yunov, O.I., Belous, A.G., Tovstolytkin, A.I., and Yanchevskii, O.Z., (LaSr)(Mn,Me)O3 manganites doped with d metals: study of charge compensation mechanisms by crystallographic and magnetic characterizations, J. Eur. Ceram. Soc., 2007, vol. 27, nos. 13–15, pp. 3919–3322. https://doi.org/10.1016/j.jeurceramsoc.2007.02.063

  17. Cai, J.-W., Wang, C., Shen, B.-G., Zhao, J.-G., and Zhan, W.-S., Colossal magnetoresistance of spin-glass perovskite La0.67Ca0.33Mn0.9F0.1O3, Appl. Phys. Lett., 1997, vol. 71, no. 12, pp. 1727–1729. https://doi.org/10.1063/1.120017

    Article  CAS  Google Scholar 

  18. Barandiaran, J.M., Greneche, J.M., Hernandez, T., Plazaola, F., and Rojo, T., Non-conventional magnetic order in Fe-substituted La0.7Sr0.3MnO3 giant-magnetoresistance manganites, J. Phys.: Condens. Matter, 2002, vol. 14, no. 47, pp. 12563–12573. https://doi.org/10.1088/0953-8984/14/47/328

    Article  CAS  Google Scholar 

  19. Sedykh, V.D., Zver’kova, I.I., Shekhtman, V.S., Dubovitskii, A.V., and Kulakov, V.I., Mössbauer and X-ray studies of the structural phase transformations and suppression of polymorphism in La1 –xSrxMn0.98Fe0.02O3 + δ (x = 0.05–0.30), Physics of the Solid State, 2010, vol. 52, no. 3, pp. 591–598.https://doi.org/10.1134/S1063783410030212

    Article  CAS  Google Scholar 

  20. Grigor’ev, I.S. and Melikhova, E.Z., Fizicheskie velichiny: Spravochnik (Physical Values: Handbook), Moscow: Energoatomizdat, 1991.

  21. Karpasyuk, V.K., Kiselev, V.N., Orlov, G.N., and Shchepetkin, A.A., Elektromagnitnye svoistva i neste-khiometriya ferritov s pryamougol’noi petlei gisterezisa (Electromagnetic Properties and Nonstoichiometry of Ferrites with a Rectangular Hysteretic Loop), Moscow: Nauka, 1985.

  22. Dagotto, E., Hotta, T., and Moreo, A., Colossal magnetoresistant materials: the key role of phase separation, Phys. Rep., 2001, vol. 344, pp. 1–153. https://doi.org/10.1016/S0370-1573(00)00121-6

    Article  CAS  Google Scholar 

  23. Sotirova-Haralambeva, E.V., Wang, X.L., Liu, K.H., Silver, T., Konstantinov, K., and Horvat, J., Zinc doping effects on the structure, transport and magnetic properties of La0.7Sr0.3Mn1 –xZnxO3 manganite oxide, Sci. Technol. Adv. Mater., 2003, vol. 4, no. 2, pp. 149–152. https://doi.org/10.1016/S1468-6996(03)00028-7

    Article  CAS  Google Scholar 

  24. Karpasyuk, V.K., Badelin, A.G., Datskaya, Z.R., Merkulov, D.I., and Estemirova, S.Kh., Properties of La–Sr manganites with combined substitution of different valence ions for strontium and manganese, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 2, pp. 201–206.https://doi.org/10.1134/S2075113318050143

    Article  Google Scholar 

  25. Balagurov, A.M., Bobrikov, I.A., Pomyakushin, V.Yu., Sheptyakov, D.V., Babushkina, N.A., Gorbenko, O.Yu., Kartavtseva, M.S., and Kaul’, A.R., Magnetostructural phase separation and giant isotope effect in R0.5Sr0.5MnO3, JETP Lett., 2005, vol. 82, no. 9, pp. 594–598. https://doi.org/10.1134/1.2161288

    Article  CAS  Google Scholar 

  26. Teplykh, A.E., Bogdanov, S.G., Valiev, E.Z., Pirogov, A.N., Dorofeev, YU.A., Kazantsev, V.A., Kar’kin, A.E., Ostroushko, A.A., and Udilov, A.E., Size effect in nanocrystalline manganites La1 –xAxMnO3 with A = Ag, Sr, Phys. Solid State, 2003, vol. 45, no. 12, pp. 2328–2333.https://doi.org/10.1134/1.1635506

    Article  CAS  Google Scholar 

  27. Deisenhofer, J., Braak, D., Krug von Nidda, H.-A., Hemberger, J., Eremina, R.M., Ivanshin, V.A., Balbashov, A.M., Jug, G., Loidl, A., Kimura, T., and Tokura, Y., Observation of a Griffiths phase in paramagnetic La1 –xSrxMnO3, Phys. Rev. Lett., 2005, vol. 95, p. 257202. https://doi.org/10.1103/PhysRevLett.95.257202

    Article  CAS  PubMed  Google Scholar 

  28. Joshi, J.P. and Bhat, S.V., On the analysis of broad Dysonian electron paramagnetic resonance spectra, J. Magn. Reson., 2004, vol. 168, pp. 284–287. https://doi.org/10.1016/j.jmr.2004.03.018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-52-06011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Badelin, V. K. Karpasyuk, D. I. Merkulov, R. M. Eremina, I. V. Yatsyk, A. V. Shestakov or S. Kh. Estemirova.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badelin, A.G., Karpasyuk, V.K., Merkulov, D.I. et al. Effect of Iron Doping on Structural, Magnetic, and Electrical Characteristics of Manganites in La0.7Sr0.3Mn0.9Zn0.1 –xFexO3 (0 ≤ x ≤ 0.1) System. Inorg. Mater. Appl. Res. 11, 435–440 (2020). https://doi.org/10.1134/S2075113320020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020057

Keywords:

Navigation