Skip to main content
Log in

Calcium Phosphate Compositions with Polyvinyl Alcohol for 3D Printing

  • Published:
Inorganic Materials: Applied Research Aims and scope

Absract

—On the basis of calcium phosphate compositions with a 30% polyvinyl alcohol content, three-dimensional mockups have been obtained using 3D bioprinting. It is shown that at a content of 7–14% of the polymer, calcium phosphate compositions are well extruded and exhibit the strength after hardening up to 4 MPa. Heating compositions Ca10(PO4)6 (OH)2/α-Ca3(PO4)2 up to 900°С in the presence of CaHPO4 promotes phase transformations mainly into β-Ca3(PO4)2 and β-Ca2P2O7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Evdokimov, P.V., Fadeeva, I.V., Fomin, A.S., Filippov, Ya.Yu., Kovalkov, V.K., Knotko, A.V., Putlyaev, V.I., and Barinov, S.M., Reinforcement of brushite cement based on α-TCP by rigid polylactide framework, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 130–133.

    Article  Google Scholar 

  2. Knot’ko, A.V., Evdokimov, P.V., Fadeeva, I.V., Fomin, A.S., Barinov, S.M., Volchenkova, V.A., and Fomina, A.A., Study of brushite cement based on alpha-tricalcium phosphate and its composite with polylactide skeleton, Perspekt. Mater., 2018, no. 7, pp. 26–32. https://doi.org/10.30791/1028-978X-2018-7-26-32

  3. Senatov, F.S., Niaza, K.V., Zadorozhnyy, M.Yu., Maksimkin, A.V., Kaloshkin, S.D., and Estrin, Y.Z., Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds, J. Mech. Behav. Biomed. Mater., 2016, vol. 57, pp. 139–148. https://doi.org/10.1016/j.jmbbm.2015.11.036

    Article  CAS  PubMed  Google Scholar 

  4. Schneider, M., Günter, C., and Taubert, A., Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly (lactic acid) scaffolds via dip coating: Towards automated biomaterials fabrication, Polymers, 2018, vol. 10, art. ID 275. https://doi.org/10.3390/polym10030275

    Article  CAS  PubMed Central  Google Scholar 

  5. Park, S., Kim, G.-H., Jeon, Y.C., Koh, Y.H., and Kim, W.-D., 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system, J. Mater. Sci: Mater. Med., 2009, vol. 20, pp. 229–234. https://doi.org/10.1007/s10856-008-3573-4

    Article  CAS  Google Scholar 

  6. Bochkarev, V.V., Videnin, V.N., Druzhinina, T.V., Trofimov, K.V., Kliment’ev, A.A., and Popov, V.P., Hydroxyapatite-based biodegradable material for bone tissue replacement in an animal experiment, Aktual. Vopr. Vet. Biol., 2016, vol. 30, no. 2, pp. 54–60.

    Google Scholar 

  7. Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medicine, Russ. Chem. Rev., 2010, vol. 79, no. 1, pp. 13–29.

    Article  CAS  Google Scholar 

  8. Fedotov, A.Yu., Komlev, V.S., Smirnov, V.V., Fadeeva, I.V., Barinov, S.M., Ievlev, V.M., Soldatenkov, S.A., Ser-geeva, N.S., Sviridova, I.K., Kirsanova, V.A., and Akhmedova, S.A., Hybrid composite materials based on chitosan and gelatin and reinforced with hydroxyapatite for tissue engineering, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 1, pp. 85–90.

    Article  Google Scholar 

  9. Savvova, O.V., Bragina, L.L., Shadrina, G.N., Babich, E.V., and Fesenko, A.I., Surface properties of biocompatible calcium-silicon-phosphate glass ceramic materials and coatings, Glass Ceram., 2017, vol. 74, nos. 1–2, pp. 29–33.

  10. Naga, S.M., Mahmoud, E.M., El-Maghraby, H.F., El-Kady, A.M., Arbid, M.S., Killinger, A., and Gadow, R., Nano-biogenic hydroxyapatite porous scaffolds for bone regeneration, Interceram, 2018, vol. 4, pp. 36–42.

    Google Scholar 

  11. Baitus, N.A., Hydroxyapatite-based synthetic osteoplastic preparations in dentistry, Vestn. Vitebsk. Gos. Med. Univ., 2014, vol. 13, no. 3, pp. 29–34.

  12. Smirnov, V.V., Porous cements for filling bone defects, Materialovedenie, 2009, no. 8, pp. 16–19.

  13. Musskaya, O.N., Kulak, A.I., Krut’ko, V.K., Lesnikovich, Yu.A., Kazbanov, V.V., and Zhitkova, N.S., Preparation of bioactive mesoporous calcium phosphate granules, Inorg. Mater., 2018, vol. 54, no. 2, pp. 117–124. https://doi.org/10.1134/S0020168518020115

    Article  CAS  Google Scholar 

  14. Krut’ko, V.K., Kulak, A.I., Lesnikovich, L.A., Trofimova, I.V., Musskaya, O.N., Zhavnerko, G.K., and Paribok, I.V., Influence of the dehydration procedure on the physicochemical properties of nanocrystalline hydroxylapatite xerogel, Russ. J. Gen. Chem., 2007, vol. 77, no. 3, pp. 336–342. https://doi.org/10.1134/S1070363207030036

    Article  CAS  Google Scholar 

  15. Krut’ko, V.K., Kulak, A.I., and Musskaya, O.N., Thermal transformations of composites based on hydroxyapatite and zirconia, Inorg. Mater., 2017, vol. 53, no. 4, pp. 429–436. https://doi.org/10.1134/S0020168517040094

    Article  Google Scholar 

  16. Degirmenbasi, N., Kalyon, D.M., and Birinci, E., Biocomposites of nanohydroxyapatite with collagen and poly (vinyl alcohol), Colloids Surf., B, 2006, vol. 48, no. 1, pp. 42–49. https://doi.org/10.1016/j.colsurfb.2006.01.002

    Article  CAS  Google Scholar 

  17. Hezma, A.M., El-Rafei, A.M., El-Bahy, G.S., and Abdelrazzak Abdelrazek, B., Electrospun hydroxyapatite containing polyvinyl alcohol nanofibers doped with nanogold for bone tissue engineering, Interceram, 2017, vol. 66, nos. 3–4, pp. 96–100.

  18. Musskaya, O.N., Krut’ko, V.K., Kulak, A.I., and Lesnikovich, Yu.A., Polyvinyl alcohol- and hydroxyapatite-based film composites, Polim. Mater. Tekhnol., 2017, vol. 3, no. 2, pp. 28–33.

    Google Scholar 

  19. Fomina, A.P., Lesovoi, D.E., Artyukhov, A.A., and Shtil’man, M.I., Biodegradable polymer hydrogels based on derivatives of starch and polyvinyl alcohol, Usp. Khim. Khim. Tekhnol., 2011, vol. 25, no. 3 (119), pp. 83–87.

  20. Musskaya, O.N., Krut’ko, V.K., and Kulak, A.I., Physicochemical properties of cements based on suspensions of calcium phosphates, Fiz.-Khim. Aspekty Izuch. Klasterov, Nanostrukt. Nanomater., 2017, no. 9, pp. 317–322. https://doi.org/10.26456/pcascnn/2017.9.317

Download references

Funding

This work was financially supported by the Belarusian Republican Foundation for Fundamental Research–Russian Foundation For Basic Research program (project nos. Kh18R-063 Bel. and 18-53-00034 Ros.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Musskaya.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musskaya, O.N., Krut’ko, V.K., Kulak, A.I. et al. Calcium Phosphate Compositions with Polyvinyl Alcohol for 3D Printing. Inorg. Mater. Appl. Res. 11, 192–197 (2020). https://doi.org/10.1134/S2075113320010268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320010268

Keywords:

Navigation