Skip to main content
Log in

Evolution of the Structure and Properties of High-Chromium Heat-Resistant VZh159 Alloy Prepared by Selective Laser Melting: Part I

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The evolution of the structural-phase state of the VZh159 alloy fabricated by selective laser melting after various types of thermal exposure and hot isostatic pressing (HIP) is studied. The effect of a long 500-h exposure at temperatures of 800 and 900°C on the phase composition and morphology of structural components is determined. The short-term and long-term strength of the material in various conditions are studied. It is shown that the segregation of dispersed particles of the σ phase after the gas-static treatment followed by aging and after prolonged exposure at high temperatures does not have a significant negative effect on the plastic and strength characteristics of the alloy. The long-term strength of the synthesized metal after the 500-h exposure at a temperature of 900°C corresponds to the certified values ​​for the deformed semifinished product of the VZh159 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kablov, E.N., Tendentsii i orientiry innovatsionnogo razvitiya Rossii (Trends and Objectives of Innovative Development of Russia), Moscow: Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2015, 3rd ed.

  2. Jouiad, M., Marinb, E., Devarapalli, R.S., Cormier, J., Ravaux, F., Le Gal, C., and Franchet, J.-M., Microstructure and mechanical properties evolutions of alloy 718 during isothermal and thermal cycling over-aging, Mater. Des., 2016, vol. 102, pp. 284–296.

    Article  CAS  Google Scholar 

  3. Zhang, Y., Huang, X., Wang, Y., Yu, W., and Hu, Z., Delta phase and deformation fracture behaviour of Inconel 718 alloy, Proc. Int. Symp. on Superalloys 718, 625, 706 and Various Derivatives, Loria, E.A., Ed., Warrendale, PA: Miner. Met. Mater. Soc., 1997, pp. 229–236.

  4. Desvallees, Y., Bouzidi, M., Bois, F., and Beaude, N., Delta phase in Inconel 718: Mechanical properties and forging process requirements, Proc. Int. Symp. on Superalloys 718, 625, 706 and Various Derivatives, Loria, E.A., Ed., Warrendale, PA: Miner. Met. Mater. Soc., 1994, pp. 281–291.

  5. Jambor, M., Bokůvka, O., Nový, F., Trško, L., and Belan, J., Phase transformations in nickel base superalloy Inconel 718 during cyclic loading at high temperature, Prod. Eng. Arch., 2017, vol. 15, pp. 15–18.

    Article  Google Scholar 

  6. Nunes, R.M., Pereira, D., Clarke, T., and Hirsch, T.K., Delta phase characterization in Inconel 718 alloys through X-ray diffraction, ISIJ Int., 2015, vol. 111, pp. 2450–2454.

    Article  Google Scholar 

  7. Lalvani, H.M. and Brooks, J.W., Hot forging of IN718 with solution-treated and delta-containing initial microstructures, Metallogr. Microstruct. Anal., 2016, no. 5, pp. 392–401.

    Article  CAS  Google Scholar 

  8. Radavich, J.F. and Fort, A., Effects of long-time exposure in alloy 625 at 1200°F, 1400°F and 1600°F, Proc. Int. Symp. on Superalloys 718, 625, 706 and Various Derivatives, Loria, E.A., Ed., Warrendale, PA: Miner. Met. Mater. Soc., 1994, pp. 635–647.

  9. Floreen, S., Fuchs, G.E., and Yang, W.J., The metallurgy of alloy 625, Proc. Int. Symp. on Superalloys 718, 625, 706 and Various Derivatives, Loria, E.A., Ed., Warrendale, PA: Miner. Met. Mater. Soc., 1994, pp. 13–37.

  10. Sims, C.T., Stoloff, N.S., and Hagel, W.C., Superalloys II, New York: Wiley, 1987.

    Google Scholar 

  11. Idell, Y., Levine, L.E., Allen, A.J., Fan, Z., Campbell, C.E., Olson, G.B., Gong, J., Snyder, D.R., and Deutchman, H.Z., Unexpected σ-phase formation in additive-manufactured Ni-based superalloy, JOM, 2016. vol. 68, no. 3, pp. 950–959.

    Article  CAS  Google Scholar 

  12. Mostafa, A., Rubio, I.P., Brailovski, V., Jahazi, M., and Medraj, M., Structure, texture and phases in 3D printed IN718 alloy subjected to homogenization and HIP treatments, Metals, 2017, vol. 7, pp. 2–23.

    Google Scholar 

  13. Azadian, S., Wei, L.-Y., and Warren, R., Delta phase precipitation in Inconel 718, Mater. Charact., 2004, vol. 53, pp. 7–16.

    Article  CAS  Google Scholar 

  14. Kreitcberg, A., Brailovski, V., and Turenne, S., Elevated temperature mechanical behavior of IN625 alloy processed by laser powder-bed fusion, Mater. Sci. Eng., A, 2017, vol. 700, pp. 540–553.

    Article  CAS  Google Scholar 

  15. Kreitcberg, A., Brailovski, V., and Turenne, S., Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion, Mater. Sci. Eng., A, 2017, vol. 689, pp. 1–10.

    Article  CAS  Google Scholar 

  16. Harrison, N.J., Todd, I., and Mumtaz, K., Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach, Acta Mater., 2015, vol. 94, pp. 59–68.

    Article  CAS  Google Scholar 

  17. Bauer, T., Dawson, K., Spierings, A.B., and Wegener, K., Microstructure and mechanical characterization of SLM processed Haynes 230, Proc. 26th Annual Int. Solid Freeform Fabrication Symp., Austin: Univ. of Texas Press, 2015, pp. 813–822.

  18. Paul, C.P., Ganesh, P., Mishra, S.K., Bhargava, P., Negi, J., and Nath, A.K., Investigating laser rapid manufacturing for Inconel-625 components, Opt. Laser Technol., 2007, vol. 39, pp. 800–805.

    Article  Google Scholar 

  19. Mumtaz, K. and Hopkinson, N., Selective laser melting of Inconel 625 using pulse shaping, Rapid Prototyping J., 2010, vol. 16, no. 4, pp. 248–257.

    Article  Google Scholar 

  20. Ozel, T., Arisoy, Y.M., and Criales, L.E., Computation simulation of thermal and spattering phenomena and microstructure in selective laser melting of Inconel 625, Phys. Procedia, 2016, vol. 83, pp. 1435–1443.

    Article  CAS  Google Scholar 

  21. Ganesh, P., Kaul, R., Paul, C.P., Tiwari, P., Rai, S.K., Prasad, R.C., and Kukreja, L.M., Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures, Mater. Sci. Eng., A, 2010, vol. 527, pp. 7490–7497.

    Article  Google Scholar 

  22. Mancisidor, A.M., Garciandia, F., San Sebastian, M., Álvarez, P., Díaz, J., and Unanue, I., Reduction of the residual porosity in parts manufactured by selective laser melting using skywriting and high focus offset strategies, Phys. Procedia, 2016, vol. 83, pp. 864–873.

    Article  CAS  Google Scholar 

  23. Liu, F., Lin, X., Yang, G., Song, M., Chen, J., and Huang, W., Recrystallization and its influence on microstructures and mechanical properties of laser solid formed nickel base superalloy Inconel 718, Rare Met. (Beijing, China), 2011, vol. 30, pp. 433–438.

    CAS  Google Scholar 

  24. Fan, Z., Levine, L.E., Allen, A.J., Campbell, C.E., Lass, E., Cheruvathur, S., Stoudt, M.R., Williams, M.E., and Idell, Y.S., Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering, Scr. Mater., 2017, vol. 131, pp. 98–102.

    Article  Google Scholar 

  25. Liu, F., Lin, X., Yang, G., Song, M., Chen, J., and Huang, W., Recrystallization and its influence on microstructures and mechanical properties of laser solid formed nickel base superalloy Inconel 718, Rare Met.(Beijing, China), 2011, vol. 30, special issue, pp. 433–438.

    Article  CAS  Google Scholar 

  26. Zhang, B., Lee, X., Bai, J., Guo, J., Wang, P., Sun, C.-N., Nai, M., Qi, G., and Wei, J., Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing, Mater. Des., 2017, vol. 116, pp. 531–537.

    Article  CAS  Google Scholar 

  27. Popovich, V.A., Borisov, E.V., Popovich, A.A., Sufiiarov, V.Sh., Masaylo, D.V., and Alzina, L., Impact of heat treatment on mechanical behavior of Inconel 718 processed with tailored microstructure by selective laser melting, Mater. Des., 2017, vol. 131, pp. 12–22.

    Article  CAS  Google Scholar 

  28. Sufiiarov, V.Sh., Popovich, A.A., Borisov, E.V., and Polosov, I.A., Selective laser melting of heat-resistant Ni-based alloy, Non-Ferrous Met., 2015, no. 1, pp. 32–35.

  29. Popovich, A.A., Sufiiarov, V.Sh., Borisov, E.V., Polozov, I.A., Masaylo, D.V., and Grigoriev, A.V., Anisotropy of mechanical properties of products manufactured using selective laser melting of powdered materials, Russ. J. Non-Ferrous Met., 2017, vol. 58, no. 4, pp. 389–395.

    Article  Google Scholar 

  30. Popovich, A.A., Sufiiarov, V.Sh., Polozov, I.A., and Grigoriev, A.V., Selective laser melting of the intermetallic titanium alloy, Russ. J. Non-Ferrous Met., 2019, vol. 60, no. 2, pp. 186–193.

    Article  Google Scholar 

  31. Raevskikh, A.N., Chabina, E.B., Filonova, E.V., and Belova, N.A., Possibility of the electron backscattered diffraction (EBSD) for analysis of specific structure of Ni-based heat-resistant alloys obtained by selective laser melting, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2017, no. 12 (60), art. ID 12. https://doi.org/10.18577/2307-6046-2017-0-12-12-12. http://www.viam-works.ru. Accessed January 29, 2018.

  32. Lukina, E.A., Zaitsev, D.V., Sbitneva, S.V., and Zavodov, A.V., The structure and identification of phases in heat-resistant Ni-based alloys synthesized by selective laser melting, Trudy III Mezhdunarodnoi konferentsii “Additivnye tekhnologii: nastoyashchee i budushchee” (Proc. III Int. Conf. “Additive Technologies: Past and Future”), Moscow: Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2017, p. 5. https://elibrary.ru/item.asp?id=29034321. Accessed January 27, 2018.

  33. Zavodov, A.V., Petrushin, N.V., and Zaitsev, D.V., Microstructure and phase composition of heat-resistant ZhS32 alloy after selective laser melting, vacuum thermal processing, and hot isostatic pressing, Pis’ma Mater., 2017, no. 7 (2), pp. 111–116.

  34. Medvedev, P.N., Treninkov, I.A., Filonova, E.V., and Razuvaev, E.I., Formation of crystallographic texture and the structure of heat-resistant nickel alloys during selective laser melting, Trudy III Mezhdunarodnoi konferentsii “Additivnye tekhnologii: nastoyashchee i budushchee” (Proc. III Int. Conf. “Additive Technologies: Past and Future”), Moscow: Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2017, p. 12. https://elibrary.ru/ item.asp?id=29034328. Accessed January 28, 2018.

  35. Petrushin, N.V., Evgenov, A.G., Zavodov, A.V., and Treninkov, I.A., Structure and strength of the ZhS32-VI heat-resistant nickel alloy produced by the method of selective laser alloying on a single-crystal substrate, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 4, pp. 620–627.

    Article  Google Scholar 

  36. Alyoshin, N.P., Murashov, V.V., Grigoryev, M.V., Yevgenov, A.G., Karachevtsev, F.N., Shchipakov, N.A., and Vasilenko, S.A., Defects of heat-resistant alloys synthesized by the method of selective laser melting, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 27–31.

    Article  Google Scholar 

  37. Lomberg, B.S., Ovsepyan, S.V., Latyshev, V.B., and Chabina, E.B., Heat-resistant deformed alloys for hot path of gas turbine engines, in Aviatsionnye materialy 75 let. Izbrannye trudy (Aviation Materials—75 Years. Selected Research Works), Moscow: Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2007, pp. 59–64.

  38. Moiseev, S.A. and Latyshev, V.B., Heat-resistant welded alloys for stator assemblies of modern and prospective aviation gas turbine engines, Aviat. Mater. Tekhnol., 2003, no. 1, pp. 152–157.

  39. Dobatkin, V.I., Role of kinetic and thermodynamic factors during crystallization of granules, in Metallurgiya granul (Metallurgy of Granules), Moscow: Vseross. Inst. Legk. Splavov, 1983, no. 1, pp. 23–33.

  40. Trusova, E.F., Lashko, N.F., and Dmitrieva, L.I., Mechanism of intermetallide and carbide hardening of Ni-based heat-resistant alloys, Trudy konferentsii “Fazovyi sostav i problemy legirovaniya stalei i splavov” (Proc. Conf. “Phase Composition and Alloying of Steels and Alloys”), Moscow: Vseross. Nauchno-Issled. Inst. Aviats. Mater., 1975, pp. 27–42.

  41. Lashko, N.F., Sorokina, K.P., Georgieva, G.G., and Gavrilov, I.M., Phase composition of EI926 alloy, Trudy konferentsii “Fazovyi sostav i problemy legirovaniya stalei i splavov” (Proc. Conf. “Phase Composition and Alloying of Steels and Alloys”), Moscow: Vseross. Nauchno-Issled. Inst. Aviats. Mater., 1975, pp. 20–26.

  42. Lashko, N.F., Kozlova, M.N., and Sorokina, K.P., Phase distribution of chromium in some heat-resistant nickel alloys, Trudy konferentsii “Fazovyi sostav i problemy legirovaniya stalei i splavov” (Proc. Conf. “Phase Composition and Alloying of Steels and Alloys”), Moscow: Vseross. Nauchno-Issled. Inst. Aviats. Mater., 1975, pp. 15–20.

  43. Novikov, I.I., Teoriya termicheskoi obrabotki metallov (The Theory of Thermal Processing of Metals), Moscow: Metallurgiya, 1978.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Evgenov.

Additional information

Translated by L. Mosina

To be continued.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kablov, E.N., Evgenov, A.G., Mazalov, I.S. et al. Evolution of the Structure and Properties of High-Chromium Heat-Resistant VZh159 Alloy Prepared by Selective Laser Melting: Part I. Inorg. Mater. Appl. Res. 11, 7–16 (2020). https://doi.org/10.1134/S2075113320010153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320010153

Keywords:

Navigation