Skip to main content
Log in

Kinetics of Reduction of α-Fe2O3 Nanopowder with Hydrogen under Power Mechanical Treatment in an Electromagnetic Field

  • NEW METHODS OF TREATMENT AND PRODUCTION OF MATERIALS WITH REQUIRED PROPERTIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The kinetics of reduction of α-Fe2O3 nanopowder with hydrogen in an electromagnetic field with power mechanical treatment (PMT) in a vortex layer of ferromagnetic particles rotating in the field has been investigated. The kinetic parameters are calculated under the conditions of linear heating and isothermal conditions in accordance with the Freeman–Carroll and McKewan models, respectively. It is established that the electromagnetic field reduces the rate of reduction of the α-Fe2O3 nanopowder to 19% at 400°C, and PMT in a vortex layer intensifies the reduction process up to 4 times. The properties of the starting material and reduction products are studied using the thermogravimetry, X-ray diffraction, and electron microscopy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pankhurst, P.Q.A., Connolly, J., Jones, S.K., and Dobson, J., Applications of magnetic nanoparticles in biomedicine, J. Phys. D, 2003, vol. 36, pp. 167–181.

    Article  Google Scholar 

  2. Bengoa, J.F., Alvarez, A.M., Cagnoli, M.V., et al., Fischer–Tropsch reaction on Fe/zeolite-L system. Structure and catalytic behavior, Mater. Lett., 2002, vol. 53, pp. 6–11.

    Article  CAS  Google Scholar 

  3. Wei, Y., Fang, Zh., Zheng, L., and Tsang, E.P., Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal, Appl. Surf. Sci., 2017, vol. 399, pp. 322–329.

    Article  CAS  Google Scholar 

  4. Getmantsev, S.V., Nechaev, I.A., and Gandurina, L.V., Ochistka promyshlennykh stochnykh vod koagulyantami i flokulyantami (Cleaning of Industrial Wastewater by Coagulants and Flocculants), Moscow: Assots. Stroit. Vuzov, 2008.

  5. Ryzhonkov, D.I., Levina, V.V., and Dzidziguri, E.L., Nanomaterialy (Nanomaterials), Moscow: BINOM. Laboratoriya Znanii, 2012.

  6. Devatha, C.P., Thalla, A.K., and Shweta, Y.K., Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water, J. Clean. Prod., 2016, vol. 139, pp. 1425–1435.

    Article  CAS  Google Scholar 

  7. Fan, M., Zhang, L., Wang, R., Guo, H., and Jia, Sh., Facile and controllable synthesis of iron nanoparticles directed by montmorillonite and polyvinylpyrrolidone, Appl. Clay Sci., 2017, vol. 144, pp. 1–8.

    Article  CAS  Google Scholar 

  8. Gai, C., Zhang, F., Lang, Q., Liu, T., Peng, N., and Liu, Zh., Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol, Appl. Catal., B, 2017, vol. 204, pp. 566–576.

    Article  CAS  Google Scholar 

  9. Ravikumar, K.V.G., Dubey, S., Pulimi, M., et al., Scale-up synthesis of zero-valent iron nanoparticles and their applications for synergistic degradation of pollutants with sodium borohydride, J. Mol. Liq. A, 2016, vol. 224, pp. 589–598.

    Article  CAS  Google Scholar 

  10. Lin, L., Starostin, S.A., et al., Synthesis of iron oxide nanoparticles in microplasma under atmospheric pressure, Chem. Eng. Sci., 2017, vol. 168, pp. 360–371.

    Article  CAS  Google Scholar 

  11. Ryzhonkov, D.I., Arsent’ev, P.P., and Yakovlev, V.V., Teoriya metallurgicheskikh protsessov (Theory of Metallurgical Processes), Moscow: Metallurgiya, 1989.

  12. Logvinenko, D.D. and Shelyakov, O.P., Intensifikatsiya tekhnologicheskikh protsessov v apparatakh s vikhrevym sloem (Intensification of Technological Processes in Apparatuses with Eddy Layer), Kiev: Tekhnika, 1976.

  13. Umanskii, Ya.S., Skakov, Yu.A., et al., Kristallografiya, rentgenografiya i elektronnaya mikroskopiya (Crystallography, X-ray, and Electron Microscopy), Moscow: Metallurgiya, 1982.

  14. Freeman, E.S. and Carroll, B., The application of thermoanalytical techniques to reaction kinetics: The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate, J. Phys. Chem., 1958, vol. 62, pp. 394–397.

    Article  CAS  Google Scholar 

  15. Brown, M., Dollimore, D., and Galwey, A., Reactions in the Solid State, Amsterdam: Elsevier, 1980.

    Google Scholar 

  16. McKewan, W.M., Kinetics of iron oxide reduction, Trans. Met. Soc. AIME, 1960, vol. 218, pp. 2–6.

    CAS  Google Scholar 

  17. Buchachenko, A.L., Sagdeev, R.Z., and Salikhov, K.M., Magnitnye i spinovye effekty v khimicheskikh reaktsiyakh (Magnetic and Spin Effects in Chemical Reactions), Novosibirsk: Nauka, 1978.

  18. Rahimi, M. and Dehkordi, A.M., Reactive absorption in packed bed columns in the presence of magnetic nanoparticles and magnetic field: modeling and simulation, J. Ind. Eng. Chem., 2017, vol. 45, pp. 131–144.

    Article  CAS  Google Scholar 

  19. Nguyen, V.M., Konyukhov, Yu.V., Ryzhonkov, D.I., and Kotov, S.I., Peculiarities of nanodisperse and micron-size nickel powders produced by hydrogen reduction in the eddy magnetic field, Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya, 2016, no. 1, pp. 4–11.

  20. Ryzhonkov, D.I., Kostyrev, S.B., and Gorchakov, Yu.A., Kinetic of reduction of Fe–NiO–CuO mixtures in a rotating electromagnetic field, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1990, no. 5, pp. 101–102.

  21. Mishchenko, M.V., Bokov, M.M., and Grishaev, M.E., Activation of materials treatment in the devices with rotating electromagnetic field, Fundam. Issled., 2015, no. 2-16, pp. 3508–3512.

  22. Bezzubtseva, M.M. and Volkov, V.S., Teoreticheskie osnovy elektromagnitnoi mekhanoaktivatsii (Theory of Electromagnetic Mechanical Activation), St. Petersburg: S.-Peterb. Gos. Agrar. Univ., 2011.

  23. Chernavskii, P.A., Pankina, G.V., Turakulova, A.O., Zaikovskii, V.I., and Perov, N.S., The effect of a magnetic field on the thermal destruction of cobalt formate, Russ. J. Phys. Chem. A, 2009, vol. 83, no. 3, pp. 499–502.

    Article  CAS  Google Scholar 

  24. Hans, E., Crystallization of calcium carbonate in magnetic field in ordinary and heavy water, J. Cryst. Growth, 2004, vol. 267, pp. 251–255.

    Article  CAS  Google Scholar 

  25. Awaji, S., Ma, Y., Watanabe, K., and Motokawa, M., Magnetic field effects on growth process of YBa2Cu3O7 films by chemical vapor deposition in high magnetic fields, Materia Jpn., 2003, vol. 42, no. 2, pp. 115–123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Konyukhov, V. M. Nguyen or D. I. Ryzhonkov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyukhov, Y.V., Nguyen, V.M. & Ryzhonkov, D.I. Kinetics of Reduction of α-Fe2O3 Nanopowder with Hydrogen under Power Mechanical Treatment in an Electromagnetic Field. Inorg. Mater. Appl. Res. 10, 706–712 (2019). https://doi.org/10.1134/S2075113319030171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319030171

Keywords:

Navigation