Skip to main content
Log in

Mathematical Modeling of Stress–Strain State in Titanium Alloys Considering the Microstructure and Crystal Orientation Measured by EBSD

  • SIMULATION OF MATERIALS AND TECHNOLOGICAL PROCESSES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—The virtual structures of titanium alloy fragments are created via EBSD using microstructural research and local crystal orientations. The uniaxial strains are calculated through a finite element method taking crystallographic characteristics, anisotropic elastic moduli, and crystallographic sliding into account. The mapping of the Schmid factor is carried out for structural fragments. The influence of measured orientations on the intensity of theoretical stress and strains in the loaded elements of polycrystalline material is studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Notes

  1. These results are not given in full because of limited volume of the paper and will be considered in our forthcoming works.

REFERENCES

  1. Il’in, A.A., Kolachev, B.A., and Pol’kin, I.S., Titanovye splavy. Sostav, struktura, svoistva (Titanium Alloys: Composition, Structure, and Properties), Moscow: Vseross. Inst. Legk. Splavov, Mosk. Aviats. Tekhnol. Inst., 2009.

    Google Scholar 

  2. Titanovye splavy. Metallografiya titanovykh splavov (Titanium Alloys. Metallography of Titanium Alloys), Glazunov, S.G. and Kolachev, B.A., Eds., Moscow: Metallurgiya, 1980.

    Google Scholar 

  3. Polufabrikaty iz titanovykh splavov (Semiproducts from Titanium Alloys), Anoshkin, N.F., Ed., Moscow: Metallurgiya, 1996.

    Google Scholar 

  4. Mironov, S.Yu., Danilenko, V.N., Myshlyaev, M.M., and Korneva, A.V., Analysis of the spatial orientation distribution of building blocks in polycrystals as determined using transmission electron microscopy and a backscattered electron beam in a scanning electron microscope, Phys. Solid State, 2005, vol. 47, no. 7, pp. 1258–1266.

    Article  CAS  Google Scholar 

  5. Electron Backscatter Diffraction in Materials Science, Schwartz, A.J., Kumar, M., Adams, B.L., and Field, D.P., Eds., New York: Springer-Verlag, 2014.

    Google Scholar 

  6. Danilenko, V.N., Mironov, S.Yu., Belyakov, A.N., and Zhilyaev, A.P., Use of EBSD analysis in physical material science, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 2, pp. 28–46.

    CAS  Google Scholar 

  7. Computational Methods for Microstructure-Property Relationships, Ghosh, S. and Dimiduk, D., Eds., New York: Springer-Verlag, 2011.

    Google Scholar 

  8. Sha, W. and Malinov, S., Titanium Alloys: Modeling of Microstructure, Properties and Applications, Boca Raton: CRC Press, 2003.

    Google Scholar 

  9. Verkhoturov, A.D., Mokritskii, B.Ya., and Pustovalov, D.A., A method as the basis for new paradigm of material science, Nov. Materialoved. Nauka Tekh., 2015, no. 1, pp. 1–14.

  10. Fisher, E.S. and Renken, C.J., Single-crystal elastic moduli and the hcp → bcc transformation in Ti, Zr, and Hf, Phys. Rev., 1964, vol. 135, no. 2, pp. 482–494.

    Article  CAS  Google Scholar 

  11. Jun, T.-S., Sernicola, G., Fionn, P.E., Dunne, T., and Britton, B., Local deformation mechanisms of two-phase Ti-alloy, Mater. Sci. Eng., A, 2016, vol. 649, pp. 39–47.

    Article  CAS  Google Scholar 

  12. Roters, F., et al., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications, Acta Mater., 2010, vol. 58, pp. 1152–1211.

    Article  CAS  Google Scholar 

  13. Cailletaud, G.A., Micromechanical approach to inelastic behavior of metals, Int. J. Plast., 1991, vol. 8, pp. 55–73.

    Article  Google Scholar 

  14. Collings, E.W., The Physical Metallurgy of Titanium Alloys, Metals Park, Oh: Am. Soc. Met., 1984.

  15. Tomé, C. and Kocks, U.F., The yield surface of h.c.p. crystals, Acta Metall., 1985, vol. 33, no. 4, pp. 603–621.

    Article  Google Scholar 

  16. Schmid, E. and Boas, W., Plasticity of Crystals with Special Reference to Metals, London: Chapman and Hall, 1968.

    Google Scholar 

  17. Chechulin, B.B. and Khsein, Yu.D., Tsiklicheskaya i korrozionnaya prochnost’ titanovykh splavov (Cyclic and Corrosion Strength of Titanium Alloys), Moscow: Metallurgiya, 1987.

    Google Scholar 

  18. Zwicker, U., Titan und Titanlegierungen, Berlin: Springer-Verlag, 1974.

    Book  Google Scholar 

  19. Kolachev, B.A., Livanov, V.A., and Bukhanova, A.A., Mekhanicheskie svoistva titana i ego splavov (Mechanical Properties of Titanium and Its Alloys), Moscow: Metallurgiya, 1974.

    Google Scholar 

  20. Musienko, A.Yu., Leonov, V.P., Kozlova, I.R., and Panotskii, D.A., Computer simulation of the real structure of titanium alloys in the analysis of deformation and fracture processes. Part 1. Statement of the problem and the basic relations, Titan, 2014, no. 3 (45), pp. 45–54.

  21. Polukhin, P.I., Gorelik, S.S., and Vorontsov, V.K., Fizicheskie osnovy plasticheskoi deformatsii (Physical Principles of Plastic Deformation), Moscow: Metallurgiya, 1982.

    Google Scholar 

  22. Bernshtein, M.L. and Zaimovskii, V.A., Struktura i mekhanicheskie svoistva metallov (The Structure and Mechanical Properties of Metals), Moscow: Metallurgiya, 1970.

    Google Scholar 

  23. Ageev, N.V., Rubina, E.B., and Kovaleva, V.N., Basic and pyramidal slip in Ti–Al–Sn single-crystal single crystals, Fiz. Met. Metalloved., 1984, vol. 58, no. 2, pp. 383–388.

    Google Scholar 

  24. Rubina, E.B. and Betsofen, S.Ya., Mechanism of plastic deformation of titanium alpha-alloy titanium-aluminum-vanadium, Fiz. Met. Metalloved., 1990, no. 4, pp. 191–198.

  25. Maddin, R. and Chen, N.K., Geometrical aspect of the plastic deformation of metal single crystals, Acta Metall., 1954, vol. 2, pp. 49–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Musienko.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musienko, A.Y., Leonov, V.P., Kozlova, I.R. et al. Mathematical Modeling of Stress–Strain State in Titanium Alloys Considering the Microstructure and Crystal Orientation Measured by EBSD. Inorg. Mater. Appl. Res. 9, 1243–1253 (2018). https://doi.org/10.1134/S2075113318060205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318060205

Keywords:

Navigation