Skip to main content
Log in

Researching the Interface of Polymer Matrices with Optical Fibers in Smart Materials

  • POLYMER COMPOSITE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The interface of a polymer matrix with silica-based optical fibers covered with a protective layer is studied using the methods of microstructural analysis. The compatibility of the protective layer with the polymer matrix is investigated by IR spectroscopy taking into account the modes of curing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Gunyaeva, A.G., Chursova, L.V., Fedotov, M.Yu., and Cherfas, L.V., Analysis of carbon fiber reinforced plastic with nanomodified lightning-protection coating and integrated control system based on fiber Bragg gratings, Vopr. Materialoved., 2016, no. 1 (85), pp. 80–91.

  2. Gunyaeva, A.G., Cherfas, L.V., Komarova, O.A., and Fedotov, M.Yu., Development of a lightning-protection coating based on carbon fabric with metallic inclusions and its possible application in the construction of a wing of a la made of carbon fiber, Materialy molodezhnoi konferentsii “Fundamental’nye nauchnye osnovy sovremennykh kompleksnykh metodov issledovanii i ispytanii materialov, a takzhe elementov konstruktsii” (Proc. Youth Conf. “Fundamental Scientific Principles of Modern Complex Methods of Studies and Testing of Materials Including Elements of Constructions”), Moscow: Vseross. Inst. Aviats. Mater., 2015, p. 6.

  3. Goncharov, V.A. and Fedotov, M.Yu., Modeling of physical and mechanical properties of intelligent carbon fiber with optic fiber sensors, Materialy V mezhdunarodnoi konferentsii “Deformatsiya i razrushenie materialov i nanomaterialov,” 26–29 noyabrya 2013 g. (Proc. V Int. Conf. “Deformation and Fracture of Materials and Nanomaterials,” November 26–29, 2013), Moscow: Inst. Metall. Materialoved., Ross. Akad. Nauk, 2013.

  4. Gulyaev, I.N., Gunyaev, G.M., and Raskutin, A.E., Polymer composite materials with functions of adaptation and state diagnostics, Aviats. Mater. Tekhnol., 2012, suppl., pp. 242–253.

  5. Fedotov, M.Yu., Goncharov, V.A., and Shienok, A.M., Advanced intelligent polymer composite materials, Materialy konferentsii “Novye materialy i tekhnologii glubokoi pererabotki syr’ya—osnova innovatsionnogo razvitiya ekonomiki Rossii” (Proc. Conf. “New Materials and Technologies of Deep Processing of Raw Materials as a Basis of Innovative Development of Russian Economics”), Moscow: Vseross. Inst. Aviats. Mater., 2012.

  6. Fedotov, M.Yu., Creation and development of intelligent materials: a review, Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 71–80.

  7. Shishkin V.V., Terentyev V.S., Kharenko D.S., Dostovalov, A.V., Wolf, A.A., Simonov, V.A., Babin S.A., Shelemba I.S., Fedotov, M.Yu., and Shienok A.M., Fiber-optic sensors based on FBGs with increased sensitivity difference embedded in polymer composite material for separate strain and temperature Measurements, Proc. Int. Conf. on Smart Infrastructure and Construction “Transforming the Future of Infrastructure through Smarter Information,” London: ICE Publ., 2016, pp. 75–79. doi 10.1680/tfitsi.61279.75

  8. Shishkin, V.V., Terentiev, V.S., Kharenko, D.S., Dostovalov, A.V., Wolf, A.A., Simonov, V.A., Fedotov, M.Yu., Shienok, A.M., Shelemba, I.S., and Babin, S.A., Experimental method of temperature and strain discrimination in polymer composite material by embedded fiber-optic sensors based on femtosecond-inscribed FBGs, J. Sens., 2016, art. ID 3230968.

  9. Kablov, E.N., Gunyaeva, A.G., Komarova, O.A., Cherfas, L.V., and Fedotov, M.Yu., RF Patent 2588552, Byull. Izobret., 2016, no. 18.

  10. Zhelezina, G.F., Sivakov, D.V., and Gulyaev, I.N., Built-in control: from sensors to smart materials, Aviats. Prom-st, 2008, no. 3, pp. 46–50.

  11. Gnusin, P.I., Vasil’ev, S.A., Medvedkov, O.I., Grekov, M.V., Dianov, E.M., Gulyaev, I.N., and Sivakov, D.V., Fiber gratings as sensitive elements in composite materials, Foton-Ekspress, 2009, no. 6 (78), pp. 90–91.

  12. Nazirov, M.F., Zhukov, Yu.A., and Yakovitskaya, S.Yu., Measurement of the deformed state of samples using fiber-optic sensors embedded into the structure of a composite material, Vopr. Oboronnoi Tekhn., Ser. 16: Tekh. Sredstva Protivodeistviya Terrorizmu, 2015, nos. 9–10, pp. 95–101.

  13. Ellerbrock, P.J., Belk, J.H., and Johnson, B.C., US Patent 6 204 920, 2008.

  14. Koyata, S. and Takaishi, K., WO Patent 2005098921, 2005.

  15. Kojima, M., Ogisu, T., Takeda, N., et al., JP Patent 2007232371, 2007.

  16. Kim, S.-W., Jeong, M.-S., Lee, I., Kim, E.-H., Kwon, I.-B., and Hwang, T.-K., Determination of the maximum strains experienced by composite structures using metal coated optical fiber sensors, Compos. Sci. Technol., 2013, vol. 78, no. 1, pp. 48–55.

    Article  CAS  Google Scholar 

  17. Di Sante, R. and Donati, L., Strain monitoring with embedded Fiber Bragg Gratings in advanced composite structures for nautical applications, Measurement, 2013, vol. 46, no. 7, pp. 2118–2126.

    Article  Google Scholar 

  18. Kojovi, A., Zivkovi, I., Brajovi, L., Mitrakovi, D., and Aleksi, R., Laminar composite materials damage monitoring by embedded optical fibers, Proc. 16th European Conf. of Fracture “Fracture of Nano and Engineering Materials and Structures,” Alexandroupolis, Greece, July 3–7, 2006, Berlin: Springer-Verlag, 2006, pp. 1035–1036.

  19. Vincenzini, P., Casciati, F., and Rizzo, P., Smart composite device for structural health monitoring, Adv. Sci. Technol., 2012, vol. 83, pp. 138–143.

    Article  Google Scholar 

  20. Deev, I.S. and Kobets, L.P., Study of the microstructure and specifics of destruction of epoxide matrices, Polym. Sci., Ser. D, 2014, vol. 7, no. 1, pp. 49–56.

    CAS  Google Scholar 

  21. Deev, I.S., Kablov, E.N., Kobets, L.P., and Chursova, L.V., Scanning electron microscopy of the deformation of the microphase structure of polymer matrices under mechanical load, Tr. Vseross. Inst. Aviats. Mater., 2014, no. 7, p. 6. doi 10.18577/2307-6046-2014-0-7-6-6. http://www.viam-works.ru. Accessed March 16, 2016.

  22. Babin, A.N., Binders for new polymer composites, Tr. Vseross. Inst. Aviats. Mater., 2013, no. 4, pp. 11. http://www.viam-works.ru. Accessed March 16, 2016.

  23. Mukhametov, R.R., Akhmadieva, K.R., Chursova, L.V., and Kogan, D.I., New polymer binders for advanced production of construction fiber polymer composite materials, Aviats. Mater. Tekhnol., 2011, no. 2, pp. 38–42.

  24. Mukhametov, R.R., Akhmadieva, K.R., Kim, M.A., and Babin, A.N., Melt binders for advanced production of new polymer composite materials, Aviats. Mater. Tekhnol., 2012, suppl., pp. 260–265.

  25. Sperling, L.H., Interpenetrating Polymer Networks and Related Materials, New York: Springer-Verlag, 1981.

    Book  Google Scholar 

  26. Gulyaev, A.I., Iskhodzhanova, I.V., and Zhuravleva, P.L., Quantitative analysis of the structure of polymer composite materials by optic microscopy, Tr. Vseross. Inst. Aviats. Mater., 2014, no. 7, p. 7. doi 10.18577/2307-6046-2014-0-7-7-7. http://www.viam-works.ru. Accessed March 16, 2016.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 13-03-12047 ofi_m).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yu. Fedotov or R. R. Mukhametov.

Additional information

Translated by V. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, M.Y., Shienok, A.M., Mukhametov, R.R. et al. Researching the Interface of Polymer Matrices with Optical Fibers in Smart Materials. Inorg. Mater. Appl. Res. 9, 1123–1131 (2018). https://doi.org/10.1134/S2075113318060072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318060072

Keywords:

Navigation