Skip to main content
Log in

Biomedical Materials Based on Polymer-Colloid Dispersion of Succinamide Chitosan-Sol of Silver Iodide

  • Materials for Ensuring Human Vital Activity and Environmental Protection
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Polymer-colloid dispersions which are products of interaction of macromolecules with inorganic sol are of special interest among polymeric materials of biomedical function. The water-soluble sodium salt of chitosan suссinamide (SChT) having a complex of unique properties, among which is biocompatibility with body tissues, bacteriostaticity, ability to biodegradation, and so on, has been used as a basis for creation of film composite materials for biomedical purpose. Sol of silver iodide (AgI) known for its bactericidal properties has been used as colloidal dispersion. Microbiological studies have shown that films on the basis of polymer-colloidal dispersion SChT-AgI possess the expressed bactericidal action, while individual sol and individual SChT at the chosen concentration are characterized only by a bacteriostatic effect. It is revealed that polymer-colloidal dispersion SChT-AgI promotes an increase in resistance of components of blood to action of hemolytic agents. It is established that addition of AgI leads to an increase in tensile strength and decrease in elongation fracture. It is shown that the obtained films in all cases destruct much more slowly and to a lesser extent than an initial film of SChT when maintaining good water-absorbing ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grishin, D.V. and Sokolov, N.N., Recombinant elastomeric proteins as a basis for the creation of new tissue engineering matrices, Izv. VUZov, Prikl. Khim. Biotekhnol., 2015, no. 2, pp. 24–36.

    Google Scholar 

  2. Peter, G. and Lotar, Sh., RF Patent 2323011, 2002.

    Google Scholar 

  3. Sokolova, S.I., Elizarova, V.M., Kovylina, O.S., and Volozhin, A.I., Use of the Lactobacterin immobilized on a collagen for the complex treatment of a chronic catarral ulitis of children with primary humoral immunodeficiency, Ross. Stomatol. Zh., 2007, no. 6, pp. 37–45.

    Google Scholar 

  4. Vasil’eva, T.M. and Chukhchin, D.G., The effect of beam-plasma modification of fibrin monomer on its biological properties, High Energy Chem., 2008, vol. 42, no. 5, pp. 404–408.

    Article  CAS  Google Scholar 

  5. Dmitrieva, L.A., Baisheva, V.I., Rainov, N.A., et al., Experimental substantiation of the use of enamel matrix protein and fibrin-fibronectin adhesive in surgery of the periodontium, Parodontologiya, 2007, no. 3, pp. 23–26.

    Google Scholar 

  6. Shtil’man, M.I., Polimery mediko-biologicheskogo naznacheniya (Polymers for Medical and Biological Purposes), Moscow: Akademkniga, 2006.

    Google Scholar 

  7. Vil’danova, R.R., Sigaeva, N.N., Kukovinets, O.S., et al., The modified hyaluronic acid and chitosan for receiving hydrogels, Vestn. Bashkir. Univ., 2016, no. 1, pp. 63–68.

    Google Scholar 

  8. Burlutskaya, O.I. and Rakhmatullin, R.R., Complex cosmetic composition hyaluronic acid + matrix peptides, Eksp. Klin. Dermatokosmetol., 2011, no. 4, pp. 41–43.

    Google Scholar 

  9. Zakharov, N.A., Ezhova, Zh.A., Koval’, E.M., et al., Hydroxyapatite-carboxymethyl cellulose nanocomposite biomaterial, Inorg. Mater., 2005, vol. 41, no. 5, pp. 509–515.

    Article  CAS  Google Scholar 

  10. Zinov’ev, E.V., Bartashevich, E.V., Prokhorenko, A.V., and Zharkov, A.V., Use of silver-containing creams and wound covers to improve the system of local treatment of wounds of patients with purulent-necrotic forms of a diabetic foot syndrome, Vestn. Novgorod. Gos. Univ. im. Yaroslava Mudrogo, 2010, no. 59, pp. 42–48.

    Google Scholar 

  11. Belov, A.A., Belova, E.L., and Filatov, V.N., The textile materials containing chitosan and a proteolytic complex from crab gepatopancreas for the medical purposes, Biomed. Khim., 2009, no. 1, pp. 61–67.

    Google Scholar 

  12. Slivkin, A.I., Lapenko, V.L., Arzamastsev, A.P., and Bolgov, A.A., Chitosan as a polymeric matrix for an immobilization of medicinal substances with antitubercular activity, Vopr. Biol., Med. Farm. Khim., 2009, no. 3, pp. 36–38.

    Google Scholar 

  13. Shurshina, A.S., Kulish, E.I., Kolesov, S.V., and Zakharov, V.P., Preparation of enzyme-containing chitosan films, Pharm. Chem. J., 2015, vol. 49, no. 3, pp. 196–198.

    Article  CAS  Google Scholar 

  14. Hench, L. and Jones, J., Biomaterials, Artificial Organs and Tissue Engineering, Boca Raton, Fl: CRC Press, 2005.

    Book  Google Scholar 

  15. Sitnikov, B.P., Shil’ko, S.V., Khusam, E.R., et al., Possible use of prostheses based on modified fluoroplastic with diamond-like nanocoating in ear surgery (experimental study), Vestn. Otorinolaringol., 2014, no. 3, pp. 20–23.

    Google Scholar 

  16. Iordanskii, A.L., Rogovina, S.Z., and Berlin, A.A., The current state and the prospective development of the nanoimplants containing medicinal substances, Obzor. Zh. Khim., 2013, no. 2, pp. 129–146.

    Google Scholar 

  17. Antonova, L.V., Sergeeva, E.A., Babich, O.O., et al., The study of the cardiotoxicity of products of hydrolytic degradation of tubular polymer matrices proposed as the small diameter vascular implant, Kompleksn. Probl. Serdechno-Sosudistykh Zabol., 2015, no. 3, pp. 6–11.

    Google Scholar 

  18. Zhiryakova, M.V. and Izumrudov, V.A., Controlled stability of a polymer-colloid complex in aqueoussaline solutions, Polym. Sci., Ser. A, 2008, vol. 50, no. 10, pp. 1057–1064.

    Article  Google Scholar 

  19. Ivanov, V.K., Polezhaeva, O.S., Shaporev, A.S., Baranchikov, A.E., Shcherbakov, A.B., and Usatenko, A.V., Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acids, Russ. J. Inorg. Chem., 2010, vol. 55, no. 3, pp. 328–332.

    Article  CAS  Google Scholar 

  20. Chernova, V.V., Valiyev, D.R., Bazunova, M.V., and Kulish, E.I., Influence of the dispersed phase on the rheological behavior of polymer-colloidal dispersions based on sols of silver iodide and chitosan, Izv. Ufimsk. Nauch. Tsentra, Ross. Akad. Nauk, 2016, no. 1, pp. 96–98.

    Google Scholar 

  21. Venediktov, E.A., Padokhin, V.A., and Ganiev, R.F., Preparation and stabilization of silver nanoparticles in liquid water-soluble starch matrix, Dokl. Chem., 2010, vol. 431, no. 1, pp. 82–84.

    Article  CAS  Google Scholar 

  22. Tyukova, I.S., Safronov, A.P., Kotel’nikova, A.P., and Agalakova, D.Yu., Electrostatic and steric mechanisms of iron oxide nanoparticle sol stabilization by chitosan, Polym. Sci., Ser. A, 2014, vol. 56, no. 4, pp. 498–504.

    Article  CAS  Google Scholar 

  23. Lukuttsova, N.P., Postnikova, O.A., Pykin, A.A., et al., Effective use of nanodispersed titanium dioxide in photocatalysis, Vestn. Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2015, no. 3, pp. 54–57.

    Google Scholar 

  24. Huang, H. and Yang, X., Chitosan mediated assembly of gold nanoparticles multilayer, Colloids Surf. A, 2003, vol. 226, nos. 1–3, pp. 77–86.

    Article  CAS  Google Scholar 

  25. Oh, K.S., Kim, R.S., Lee, J., et al., Gold/chitosan/pluronic composite nanoparticles for drug delivery, J. Appl. Polym. Sci., 2008, vol. 108, pp. 3239–3244.

    Article  CAS  Google Scholar 

  26. Yurmazova, T.A., Galanov, A.I., Savel’ev, G.G., et al., Magnetic carrier for doxorubicin and its chemical transformation in model biological fluids, Izv. Tomsk. Politekh. Univ., 2009, no. 3, pp. 50–54.

    Google Scholar 

  27. Akopdzhanov, A.G., Sergeev, A.I., Manvelov, E.V., et al., Pharmacological properties of nanoparticles of complex iron oxide as the contrast magnetic resonance agent, Eksp. Klin. Farmakol., 2010, no. 6, pp. 23–28.

    Google Scholar 

  28. Macdougall, I.C., Strauss, W.E., and McLaughlin, J., A randomized comparison of ferumoxytol and iron sucrose for treating iron deficiency anemia in patients with CKD, Clin. J. Am. Soc. Nephrol., 2014, vol. 9, no. 4, pp. 705–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhattacharyya, S., Kudgus, R.A., Bhattacharyya, R., et al., Inorganic nanoparticles in cancer therapy, Pharm. Res., 2011, no. 2, pp. 237–259.

    Article  CAS  Google Scholar 

  30. Slivkin, A.I., Lapenko, V.L., Arzamastsev, A.P., and Bolgov, A.A., Aminoglucans as biologically active components of medicines: The review over 2000–2004, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2005, no. 2, pp. 73–87.

    Google Scholar 

  31. Bukina, Yu.A. and Sergeeva, E.A., Antibacterial properties and mechanism of bactericidal action of nanoparticles and silver ions, Vestn. Kazan. Tekhnol. Univ., 2012, no. 14, pp. 170–172.

    Google Scholar 

  32. Frolov, Yu.G. and Grodskii, A.S., Laboratornye raboty i zadachi po kolloidnoi khimii (Practical Manual on Colloid Chemistry), Moscow: Khimiya, 1986.

    Google Scholar 

  33. Chernova, V.V., Tuktarova, I.F., and Kulish, E.I., Enzymatic hydrolysis of chitosan films in water and physiological solution, Appl. Biochem. Microbiol., 2016, vol. 52, no. 5, pp. 525–530.

    Article  CAS  Google Scholar 

  34. Shamratova, V.G., Sharafutdinova, L.A., Khismatullina, Z.R., et al., The influence of ultrafine systems based on chitosan complexes and its derivatives with colloid particles of silver iodide on structural and functional properties of erythrocytes, Biomeditsina, 2015, no. 3, pp. 69–77.

    Google Scholar 

  35. Lipatov, Yu.S., Fizicheskaya khimiya napolnennykh polimerov (Physical Chemistry of the Filled Polymers), Moscow: Khimiya, 1977.

    Google Scholar 

  36. Biokhimiya: uchebnik dlya vuzov (Biochemistry: Manual for Higher Educational Institutions), Severin, E.S., Ed., Moscow: GEOTAR-Med, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Bazunova.

Additional information

Original Russian Text © D.R. Valiyev, M.V. Bazunova, V.V. Chernova, A.S. Shurshina, E.I. Kulish, 2018, published in Perspektivnye Materialy, 2018, No. 4, pp. 14–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiyev, D.R., Bazunova, M.V., Chernova, V.V. et al. Biomedical Materials Based on Polymer-Colloid Dispersion of Succinamide Chitosan-Sol of Silver Iodide. Inorg. Mater. Appl. Res. 9, 873–878 (2018). https://doi.org/10.1134/S2075113318050283

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318050283

Keywords

Navigation