Skip to main content
Log in

Analysis of the Background Temperature During the Mechanical Alloying of Metal Powders in the Planetary Ball Mill

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The background temperature of milling bodies and processed material is analyzed using calorimetric measures and methods of melting of reference substances during mechanical alloying of powders in planetary ball mill. It is shown that estimation of the background temperature using the calorimetric method provides more precise measurements compared to the melting method of reference substances. The dependence of background temperature change on mechanical alloying time, vial filling coefficient, mixture content of processed materials, rotation velocity of carrier, and processing atmosphere is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avvakumov, E.G., Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskoi tekhnologii: monografiya (Fundamentals of Mechanical Activation, Mechanical Synthesis, and Mechanochemical Technologies: Monograph), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2009.

    Google Scholar 

  2. Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  3. Gerasimov, K.B., Gusev, A.A., Kolpakov, V.V., and Ivanov, E.Yu., Measurement of the background temperature during mechanical fusion in planetary centrifugal mills, Sib. Khim. Zh., 1991, no. 3, pp. 140–145.

    Google Scholar 

  4. Tikhomirov, A.V., Aksenov, A.A., Shelekhov, E.V., Kaloshkin, S.D., Zadorozhnyi, V.Yu., Skakov, Yu.A., and Milovzorov, G.S., Calculation and measurement of the macroscopic temperature of mechanical alloying in a planetary mill with a ball load and quasi-cylindrical grinding body, Russ. J. Non-Ferrous Met., 2008, vol. 49, no. 3, pp. 193–198.

    Article  Google Scholar 

  5. Shelekhov, E.V., Tcherdyntsev, V.V., Pustov, L.Yu., Kaloshkin, S.D., and Tomilin, I.A., Computer simulation of mechanoactivation process in the planetary ball mill: determination of the energy parameters of milling, Mater. Sci. Forum, 2000, vols. 343–346, pp. 603–608.

    Article  Google Scholar 

  6. Pustov, L.Yu., Kaloshkin, S.D., Tcherdyntsev, V.V., Tomilin, I.A., Shelekhov, E.V., and Salimon, A.I., Experimental measurement and theoretical computation of milling intensity and temperature for the purpose of mechanical alloying kinetics description, Mater. Sci. Forum, 2001, vols. 360–363, pp. 373–378.

    Article  Google Scholar 

  7. Pustov, L.Yu., The structure and phase transformations in Fe–Mn and Fe–Ni alloys prepared by mechanic fusion, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow, 2004.

    Google Scholar 

  8. Shelekhov, E.V. and Sviridova, T.A., Simulation of balls motion and heating in planetary-type mill. The effect of processing modes onto mechanical activation products of Ni and Nb powders mixture, Materialovedenie, 1999, no. 10, pp. 13–22.

    Google Scholar 

  9. Shelekhov, E.V. and Sviridova, T.A., Computer simulation of the process of mechanical alloying in ball mills. Part 1: Kinetic and statistical geometry of changes in material during mechanical alloying, Materialovedenie, 2007, no. 9, pp. 13–19.

    Google Scholar 

  10. Shelekhov, E.V. and Sviridova, T.A., Computer simulation of the process of mechanical alloying in ball mills. Part 2: Calculation of the contact area between grinding bodies and impact time, Materialovedenie, 2007, no. 11, pp. 13–20; no. 12, pp. 10–14.

    Google Scholar 

  11. Shelekhov, E.V. and Sviridova, T.A., Computer simulation of the process of mechanical alloying in ball mills. Part 3: Kinetics of motion of grinding bodies and calculation of the temperature of grinding medium, Materialovedenie, 2008, no. 2, pp. 10–22; no. 3, pp. 11–24.

    Google Scholar 

  12. Shelekhov, E.V. and Sviridova, T.A., Computer simulation of the process of mechanical alloying in ball mills. Part 4: The model for a planetary activator with a quasicylindrical grinding body, Materialovedenie, 2008, no. 4, pp. 16–23.

    Google Scholar 

  13. Brandes, E.A. and Brook, G.B., Smithells Metals Reference Book, Oxford: Butterworth-Heinemann, 1992, 7th ed.

    Google Scholar 

  14. Kwon, Y.S., Gerasimov, K.B., and Yoon, S.K., Ball temperatures during mechanical alloying in planetary mills, J. Alloys Compd., 2002, vol. 346, pp. 276–281.

    Article  CAS  Google Scholar 

  15. Shelekhov, E.V. and Sviridova, T.A., Programs for xray analysis of polycrystals, Met. Sci. Heat Treat., 2000, vol. 42, no. 8, pp. 309–313.

    Article  CAS  Google Scholar 

  16. Zadorozhnyi, V.Yu., Skakov, Yu.A., and Milovzorov, G.S., Appearance of metastable states in Fe–Ti and Ni–Ti systems in the process of mechanochemical synthesis, Met. Sci. Heat Treat., 2008, vol. 50, pp. 404–410.

    Article  CAS  Google Scholar 

  17. Zadorozhnyi, V.Yu., Klyamkin, S.N., Kaloshkin, S.D., and Skakov, Yu.A., Production of intermetallic compound of FeTi by means of mechanochemical synthesis and its interaction with hydrogen, Inorg. Mater.: Appl. Res., 2010, vol. 1, no. 1, pp. 41–45.

    Article  Google Scholar 

  18. Zadorozhnyy, V.Yu., Klyamkin, S.N., Kaloshkin, S.D., Zadorozhnyy, M.Yu., and Bermesheva, O.V., Mechanochemical synthesis and hydrogen sorption properties of nanocrystalline TiFe, Inorg. Mater., 2011, vol. 47, pp. 1081–1086.

    Article  CAS  Google Scholar 

  19. Zadorozhnyy, V., Klyamkin, S., Zadorozhnyy, M., Bermesheva, O., and Kaloshkin, S., Hydrogen storage nanocrystalline TiFe intermetallic compound: synthesis by mechanical alloying and compacting, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 17131–17136.

    Article  CAS  Google Scholar 

  20. Zadorozhnyy, M.Yu., Kaloshkin, S.D., Klyamkin, S.N., Bermesheva, O.V., and Zadorozhnyy, V.Yu., Mechanochemical synthesis of a TiFe nanocrystalline intermetallic compound and its mechanical alloying with third component, Met. Sci. Heat Treat., 2013, vol. 54, nos. 9–10, pp. 461–465.

    Article  CAS  Google Scholar 

  21. Zadorozhnyy, M.Yu., Klyamkin, S.N., Strugova, D.V., Olifirov, L.K., Milovzorov, G.S., Kaloshkin, S.D., and Zadorozhnyy, V.Yu., Deposition of polymer coating on metallic powder through ball milling: application to hydrogen storage intermetallics, Int. J. Energy Res., 2016, vol. 40, pp. 273–279.

    Article  CAS  Google Scholar 

  22. Skakov, Yu.A., Edneral, N.V., Frolov, E.V., and Povolozki, J.A., X-ray analysis of the metals fine structure and amorphisation reaction in mechanical alloying, Mater. Sci. Forum, 1995, vols. 179–181, pp. 33–38.

    Article  Google Scholar 

  23. Skakov, Yu.A., Formation and stability of metastable phases in mechanochemical synthesis, Met. Sci. Heat Treat., 2005, vol. 47, nos. 7–8, pp. 296–304.

    Article  CAS  Google Scholar 

  24. Skakov, Yu.A., High-energy cold plastic deformation, diffusion, and mechanochemical synthesis, Met. Sci. Heat Treat., 2004, vol. 46, nos. 3–4, pp. 137–145.

    Article  CAS  Google Scholar 

  25. Karakozov, E.S., Soedinenie metallov v tverdoi faze (The Combination of Metals in the Solid Phase), Moscow: Metallurgiya, 1976.

    Google Scholar 

  26. Maurice, D. and Courtney, T.H., Modeling of mechanical alloying: Part I. Deformation, coalescence, and fragmentation mechanism, Metall. Mater. Trans. A, 1994, vol. 25, pp. 147–158.

    Article  Google Scholar 

  27. Maurice, D. and Courtney, T.H., Modeling of mechanical alloying: Part II. Development of computational modeling programs, Metall. Mater. Trans. A, 1995, vol. 26, pp. 2431–2435.

    Article  Google Scholar 

  28. Maurice, D. and Courtney, T.H., Modeling of mechanical alloying: Part III. Applications of computational programs, Metall. Mater. Trans. A, 1995, vol. 26, pp. 2437–2444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Zadorozhnyy.

Additional information

Original Russian Text © V.Yu. Zadorozhnyy, E.V. Shelekhov, G.S. Milovzorov, D.V. Strugova, L.Kh. Zinnurova, 2017, published in Materialovedenie, 2017, No. 3, pp. 11–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadorozhnyy, V.Y., Shelekhov, E.V., Milovzorov, G.S. et al. Analysis of the Background Temperature During the Mechanical Alloying of Metal Powders in the Planetary Ball Mill. Inorg. Mater. Appl. Res. 9, 559–565 (2018). https://doi.org/10.1134/S2075113318040408

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318040408

Keywords

Navigation