Skip to main content
Log in

On the Interaction of the Deformation and Photonic Self-Organizations in Condensed Media: Overview

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The experimental data on the mass transfer in condensed media under the action of mechanical stress and light pressure are presented. In both cases, the observed formation of periodic structures is interpreted from the point of view of the dynamical principle of minimum entropy production. The prospects of using the discovered self-organizing processes for the formation of photonic crystals and optical metamaterials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shcherbakov, I.A., Development history of the laser, Phys.-Usp., 2011, vol. 54, no. 1, pp. 65–71.

    Article  Google Scholar 

  2. Fabrikant, V.A., The mechanism of radiation of a gas discharge, Tr. Vses. Elektrotekhn. Inst., 1940, no. 41, pp. 236–296.

    Google Scholar 

  3. Fabrikant, V.A., Vudynskii, M.M., and Butaeva, F.A., USSR Inventor’s Certificate no. 123309, 1951.

  4. Basov, N.G. and Prokhorov, A.M., The use of molecular beams for the radiospectroscopic study of the rotational spectra of molecules, Zh. Eksp. Teor. Fiz., 1954, vol. 27, no. 4, pp. 431–438.

    CAS  Google Scholar 

  5. Kondepudi, D. and Prigogine, I., Modern Thermodynamics: From Heat Engines to Dissipative Structures, New York: Wiley, 1998.

    Google Scholar 

  6. Zubarev, D.N., Neravnovesnaya statisticheskaya termodinamika (Nonequilibrium Statistical Thermodynamics), Moscow: Fizmatlit, 1971.

    Google Scholar 

  7. Ebeling, W., Strukturbildung bei Irreversiblen Prozessen: Eine Einführung in die Theorie Dissipativer Strukturen, Leipzig: Teubner, 1976.

    Google Scholar 

  8. Karlov, N.V., Lektsii po kvantovoi elektronike (Lecturers on Quantum Electronics), Moscow: Nauka, 1988.

    Google Scholar 

  9. Bloembergen, N., Nonlinear Optics, Reading, Ma: Addison-Wesley, 1965.

    Google Scholar 

  10. Mantsyzov, B.I., Kogerentnaya i nelineinaya optika fotonnykh kristallov (Coherent and Nonlinear Optics of Photonic Crystals), Moscow: Fizmatlit, 2009.

    Google Scholar 

  11. Ioffe, A.F., A report on the scientific results of the Physical-Technical Institute, Usp. Fiz. Nauk, 1936, vol. 15, no. 7, pp. 847–871.

    Article  Google Scholar 

  12. Klassen-Neklyudova, M.V., Mekhanicheskoe dvoinikovanie kristallov (Mechanical Twinning of Crystals), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  13. Garber, R.I. and Gindin, I.A., Physics of strength of crystalline bodies, Usp. Fiz. Nauk, 1960, vol. 70, no. 1, pp. 57–110.

    Article  CAS  Google Scholar 

  14. Nadgornyi, E.M., Osip’yan, Yu.A., et al., Thread-like crystals with strength close to estimated, Usp. Fiz. Nauk, 1959, vol. 67, pp. 625–640.

    Article  CAS  Google Scholar 

  15. Ioffe, A.F., Kirpicheva, M.V., and Levitskaya, M.A., Deformation and strength of crystals, Usp. Fiz. Nauk, 1967, vol. 67, no. 2, pp. 303–314.

    Article  Google Scholar 

  16. Rozhanskii, V.N., Heterogenic plastic deformation of crystals, Usp. Fiz. Nauk, 1958, vol. 64, no. 3, pp. 387–406.

    Article  Google Scholar 

  17. Emelin, V.Ya., Klassen, N.V., and Osip’yan, Yu.A., Diffraction and anomalous light transmission in plastically deformed cadmium sulphide, Pis’ma Zh. Eksp. Teor. Fiz., 1981, vol. 33, pp. 329–332.

    CAS  Google Scholar 

  18. Emelin, V.Ya., Klassen, N.V., and Osip’yan, Yu.A., Change in polarization and diffraction of light on dislocations with screw components in plastically deformed cadmium sulphide, Fiz. Tverd. Tela, 1982, vol. 24, no. 11, pp. 3305–3310.

    CAS  Google Scholar 

  19. Malygin, G.A., Dislocation self-organization processes and crystal plasticity, Phys.-Usp., 1999, vol. 42, no. 9, pp. 887–916.

    Article  CAS  Google Scholar 

  20. Myshlyaev, M.M., The evolution of dislocation structure and plastic deformation in the creep of singlephase crystalline bodies, Extended Abstract of Doctoral (Phys.-Math.) Dissertation, Chernogolovka, 1981.

    Google Scholar 

  21. Myshlyaev, M.M., Romanov, Yu.A., Il’in, A.I., and Khodos, I.I., Dislocation structure of block boundaries in single crystals of molybdenum and tungsten, Fiz. Khim. Obrab. Mater., 1980, no. 6, pp. 112–118.

    Google Scholar 

  22. Glebovskii, V.G., Kopetskii, Ch.V., Myshlyaev, M.M., and Romanov, Yu.A., Stationary creep and dislocation structure of molybdenum, Fiz. Met. Metaloloved., 1976, vol. 41, no. 3, pp. 621–629.

    CAS  Google Scholar 

  23. Osip’yan, Yu.A. and Savchenko, I.B., The effect of light on the plastic deformation of cadmium sulphide, Pis’ma Zh. Eksp. Teor. Fiz., 1968, vol. 130, pp. 7–12.

    Google Scholar 

  24. Klassen, N.V., Osip’yan, Yu.A., and Shikhsaidov, M.Sh., Simultaneous studies of photoconductivity and photoplastic effect on CdS and ZnSe single crystals, Fiz. Tverd. Tela, 1976, vol. 18, no. 6, pp. 1587–1594.

    CAS  Google Scholar 

  25. Gorbunov, A.V. and Klassen, N.V., Periodic damage to the surface of transparent dielectrics by a laser pulse, Poverkhnost’, 1983, no. 4, pp. 96–99.

    Google Scholar 

  26. Gorbunov, A.V., Dendritic melting in a crystal volume, Solid State Phenom., 1985, vol. 23–24, pp. 5–28.

    Google Scholar 

  27. Ashkin, A., Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett., 1970, vol. 24, p.156.

    Article  CAS  Google Scholar 

  28. Reece, P.J., Wright, E.M., and Dholakia, K., Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter, Phys. Rev. Lett., 2007, vol. 98, p. 203902.

    Article  CAS  PubMed  Google Scholar 

  29. Taylor, J.M., et al., Emergent properties of optically bound matter, Optics Express, 2008, vol. 16, no. 10, pp. 6921–6929.

    Article  CAS  PubMed  Google Scholar 

  30. Barcikowski, S. and Compagnini, G., Advanced nanoparticle generation and excitation by lasers in liquids, Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 3022–3026.

    Article  CAS  PubMed  Google Scholar 

  31. Serkov, A.A., Shcherbina, M.E., Kuzmin, P.G., and Kirichenko, N.A., Laser induced agglomeration of gold nanoparticles dispersed in a liquid, Appl. Surf. Sci., 2015, vol. 116, pp. 96–102.

    Article  CAS  Google Scholar 

  32. Preobrazhenskii, A.A. and Bishard, E.G., Magnitnye materialy i elementy (Magnetic Materials and Elements), Moscow: Vysshaya Shkola, 1986.

    Google Scholar 

  33. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Magnetic nanoparticles: preparation, structure and properties, Russ. Chem. Rev., 2005, vol. 74, no. 6, pp. 489–520.

    Article  CAS  Google Scholar 

  34. Buchachenko, A.L., Organic and molecular ferromagnetics: advances and problems, Russ. Chem. Rev., 1990, vol. 59, no. 4, pp. 307–319.

    Article  Google Scholar 

  35. Skipetrov, S.E., Chesnokov, S.S., Zakharov, S.D., Kazaryan, M.A., Korotkov, N.P., and Shcheglov, V.A., Multiple dynamic scattering of laser radiation on a light-induced jet of microparticles in suspension, Quantum Electron., 1998, vol. 28, no. 5, pp. 434–438.

    Article  Google Scholar 

  36. Song, D., et al., Experiments on linear and nonlinear localization of optical vortices in optically induced photonic lattices, Singular Opt., 2012, vol. 2012, art. ID 273857.

  37. Loudet, J.C., Mihiretie, B.M., and Pouligny, B., Optically driven oscillations of ellipsoidal particles, Eur. Phys. J., 2014, vol. 37, p.125.

    Google Scholar 

  38. Urbas, A.M., et al., Roadmap on optical metamaterials, J. Opt., 2016, vol. 18, art. ID 093005.

  39. Vendik, I.B. and Vendik, O.G., Metamaterials and their application in microwaves: a review, Tech. Phys., 2013, vol. 58, no. 1, pp. 1–24.

    Article  CAS  Google Scholar 

  40. Mirzoev, F.Kh., Panchenko, V.Ya., and Shelepin, L.A., Laser control of processes in solids, Phys.-Usp., 1996, vol. 39, no. 1, pp. 1–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Klassen.

Additional information

Original Russian Text © N.V. Klassen, A.A. Vasin, K.A. Polyanin, 2017, published in Materialovedenie, 2017, No. 10, pp. 7–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klassen, N.V., Vasin, A.A. & Polyanin, K.A. On the Interaction of the Deformation and Photonic Self-Organizations in Condensed Media: Overview. Inorg. Mater. Appl. Res. 9, 570–577 (2018). https://doi.org/10.1134/S2075113318040172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318040172

Keywords

Navigation