Skip to main content
Log in

Tribotechnical Properties of Composite Material “Aluminum–Carbon Nanofibers” under Friction on Steels 12Kh1 and ShKh15

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Antifriction and wear-resistant properties of “aluminum–carbon nanofiber” composite materials fabricated using various hot pressing modes are studied under dry sliding friction on 12Kh1 and ShKh15 steels. The best tribotechnical characteristics are achieved in a composite material with 1.5% CNF. The antifriction effect of carbon nanofibers manifests itself upon crack initiation and during the motion of friction surfaces relative to each to other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakshi, S.R., et al., Carbon nanotube reinforced metal matrix composites, Int. Mater. Rev., 2010, vol. 55, no. 1, pp. 41–64.

    Article  CAS  Google Scholar 

  2. Chen, X.H., Peng, J.C., Li, X.Q., Deng, F.M., Wang, J.X., and Li, W.Z., Tribological behavior of carbon nanotubes— reinforced nickel matrix composite coatings, J. Mater. Sci. Lett., 2001, vol. 20, pp. 2057–2060.

    Article  CAS  Google Scholar 

  3. Deng, F.M., Chen, X.H., Chen, W.X., and Li, W.Z., Electroless plating Ni–P matrix composite coating reinforced by carbon nanotubes, Trans. Nonferrous Met. Soc. Chin., 2004, vol. 14, no. 4, pp. 681–685.

    CAS  Google Scholar 

  4. Larionova, T., Koltsova, T., Fadin, Y., and Tolochko, O., Friction and wear of copper–carbon nanofibers compact composites prepared by chemical vapor deposition, Wear, 2014, vol. 319, pp. 118–122.

    Article  CAS  Google Scholar 

  5. Kim, I.Y., Lee, J.H., Lee, G.S., Baik, S.H., Kim, Y.J., and Lee, Y.Z., Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions, Wear, 2009, vol. 267, pp. 593–598.

    Article  CAS  Google Scholar 

  6. Rudskoy, A.I., Tolochko, O.V., Koltsova, T.S., and Nasibulin, A.G., Synthesis of carbon nanofibers on the surface of particles of aluminum powder, Met. Sci. Heat Treat., 2014, vol. 55, no. 9, pp. 564–568.

    Article  CAS  Google Scholar 

  7. Skvortsova, A.N., Lycheva, K.A., Voznyakovskii, A.A., and Kol’tsova, T.S., Aluminum-based composite materials reinforced with carbon nanofibres, Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ., 2015, no. 3 (226), pp. 78–82.

    Google Scholar 

  8. Rudskoy, A.I., Koltsova, T.S., Shakhov, F.M., Tolochko, O.V., and Mikhailov, V.G., Effect of hot pressing modes on the structure and properties of an ‘aluminum–carbon nanofibers’ composite material, Met. Sci. Heat Treat., 2015, vol. 56, no. 9, pp. 525–530.

    Article  CAS  Google Scholar 

  9. Gvozdev, A.E., Starikov, N.E., Zolotukhin, V.I., Sergeev, N.N., Sergeev, A.N., and Breki, A.D., Tekhnologiya konstruktsionnykh i ekspluotatisonnykh materialov (Technology of Constructional and Operational Materials), Tula: Tul’sk. Gos. Univ., 2016.

    Google Scholar 

  10. Breki, A.D., Gvozdev, A.E., Kolmakov, A.G., Starikov, N.E., Provotorov, D.A., Sergeyev, N.N., and Khonelidze, D.M., On friction of metallic materials with consideration for superplasticity phenomenon, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 126–129.

    Article  Google Scholar 

  11. Gvozdev, A.E., Zhuravlev, G.M., Kolmakov, A.G., Provotorov, D.A., and Sergeev, N.N., Calculation of deformation damageability during reverse extrusion of metal products, Tekhnol. Met., 2016, no. 1, pp. 23–32.

    Google Scholar 

  12. Shorshorov, M.Kh., Gvozdev, A.E., Zolotukhin, V.I., et al., Razrabotka progressivnykh tekhnologii polucheniya i obrabotki metallov, splavov, poroshkovykh i kompozitsionnykh nanomaterialov (Development of Advanced Technologies of Production and Processing of Metals, Alloys, Powder and Composite Materials), Tula: Tul’sk. Gos. Univ., 2016.

    Google Scholar 

  13. Gulevskii, V.A., Terziman, O.V., Antipov, V.I., Vinogradov, L.V., Kidalov, N.A., and Kolmakov, A.G., Interaction of components in a composite material from a porous carbon-graphite case filled with silumin, Perspekt. Mater., 2016, no. 2, pp. 57–63.

    Google Scholar 

  14. Breki, A.D., Didenko, A.L., Kudryavtsev, V.V., Vasileva, E.S., Tolochko, O.V., Kolmakov, A.G., Fadin, Yu.A., Sergeyev, N.N., Gvosdev, A.E., Starikov, N.E., and Provotorov, D.A., Synthesis and tribotechnical properties of composite coatings with PM–DADPE polyimide matrix and fillers of tungsten dichalcogenide nanoparticles upon dry sliding friction, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 4, pp. 542–546.

    Article  Google Scholar 

  15. Vityaz’, P.A., Senyut’, V.T., Kheifets, M.L., Sobol’, S.F., and Kolmakov, A.G., Synthesis of composite nanostructured materials based on aluminum alloys, Naukoemkie Tekhnol. Mashinostr., 2016, no. 8 (62), pp. 3–11.

    Google Scholar 

  16. Breki, A.D., Didenko, A.L., Kudryavtsev, V.V., Vasilyeva, E.S., Tolochko, O.V., Gvozdev, A.E., Sergeyev, N.N., Provotorov, D.A., Starikov, N.E., Fadin, Yu.A., and Kolmakov, A.G., Composite coatings based on A–OOO polyimide and WS2 nanoparticles with enhanced dry sliding characteristics, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 56–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gvozdev.

Additional information

Original Russian Text © A.D. Breki, T.S. Kol’tsova, A.N. Skvortsova, O.V. Tolochko, S.E. Aleksandrov, A.G. Kolmakov, A.A. Lisenkov, A.E. Gvozdev, Yu.A. Fadin, D.A. Provotorov, 2017, published in Materialovedenie, 2017, No. 11, pp. 37–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breki, A.D., Kol’tsova, T.S., Skvortsova, A.N. et al. Tribotechnical Properties of Composite Material “Aluminum–Carbon Nanofibers” under Friction on Steels 12Kh1 and ShKh15. Inorg. Mater. Appl. Res. 9, 639–643 (2018). https://doi.org/10.1134/S207511331804007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511331804007X

Keywords

Navigation