Skip to main content
Log in

Phase Transformations, Strength, and Modulus of Elasticity of Ti–15Mo Alloy Obtained by High-Pressure Torsion

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

This paper is devoted to structure formation and phase transformations in the metastable Ti–15Mo β alloy during high-pressure torsion at room temperature. Transmission electron microscopy and X-ray diffraction analysis show that grain refinement takes place together with a β ↔ ω phase transformation and a nonmonotonic change in the volume fraction of the ω phase when the true strain is increased. The effect of the ω phase on the strength and the elastic properties of the alloy is considered. It is shown that nanostructure formation with a minimum amount of the ω phase is responsible for the marked hardening of the Ti–15Mo alloy while retaining its relatively low elastic modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunette, D.M., Tengvall, P., Textor, M., and Thomsen, P., Titanium in Medicine, Berlin: Springer-Verlag, 2001.

    Book  Google Scholar 

  2. Kolachev, B.A., Elagin, V.I., and Livanov, V.A., Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov (Metal Science and Thermal Treatment of Non-Ferrous Metals and Alloys), Moscow: Mosk. Inst. Stali Splavov, 2001.

    Google Scholar 

  3. Bowen, A.W., Strength enhancement in a metastable β-titanium alloy Ti–15Mo, J. Mater. Sci., 1977, vol. 12, no. 7, pp. 1355–1360.

    Article  CAS  Google Scholar 

  4. Ivasishin, O.M., Markovsky, P.E., Semiatin, S.L., and Ward, C.H., Aging response of coarse- and fine-grained titanium alloys, Mater. Sci. Eng., A, 2005, vol. 405, pp. 296–305.

    Article  Google Scholar 

  5. Panigrahi, A., Bönisch, M., Waitz, T., Schafler, E., Calin, M., Eckert, J., Skrotzki, W., and Zehetbauer, M., Thermal stability of HPT-induced omega phase in biocompatible Ti–16.1Nb alloys, J. Alloys Compd., 2015, vol. 628, pp. 434–441.

    Article  CAS  Google Scholar 

  6. Hao, Y.L., Li, S.J., Sun, S.Y., and Yang, R., Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys, Mater. Sci. Eng., A, 2006, vol. 441, pp. 112–118.

    Article  Google Scholar 

  7. Nakai, M., Niinomi, M., and Oneda, T., Improvement in fatigue strength of biomedical β-type Ti–Nb–Ta–Zr alloy while maintaining low young’s modulus through optimizing ω-phase precipitation, Metall. Mater. Trans. A, 2012, vol. 43, pp. 294–302.

    Article  CAS  Google Scholar 

  8. Wang, Y.B., Zhao, Y.H., Lian, Q., Liao, X.Z., Valiev, R.Z., Ringer, S.P., Zhu, Y.T., and Lavernia, E.J., Grain size and reversible beta to omega phase transformation in a Ti alloy, Scr. Mater., 2010, vol. 63, pp. 613–616.

    Article  CAS  Google Scholar 

  9. Xie, K.Y., Wang, Y., Zhao, Y., Chang, L., Wang, G., Chen, Z., Cao, Y., Liao, X., Lavernia, E.J., Valiev, R.Z., Sarrafpour, B., Zoellner, H., and Ringer, S.P., Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications, Mater. Sci. Eng., C, 2013, vol. 33, no. 6, pp. 3530–3536.

    Article  CAS  Google Scholar 

  10. Scardi, P., Lutterotti, L., and Di Maggio, R., Sizestrain and quantitative analysis by the Rietveld method, Adv. X-Ray Anal., 1991, vol. 35, pp. 69–76.

    Google Scholar 

  11. Janeček, M., Čížekb, J., Stráský, J., Václavová, K., Hruška, P., Polyakova, V., Gatina, S., and Semenova, I., Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion, Mater. Charact., 2014, vol. 98, pp. 233–240.

    Article  Google Scholar 

  12. Devaraj, A., Williams, R.E.A., Nag, S., Srinivasan, R., Fraser, H.L., and Banerjee, R., Three-dimensional morphology and composition of omega precipitates in a binary titanium-molybdenum alloy, Scr. Mater., 2009, vol. 61, pp. 701–704.

    Article  CAS  Google Scholar 

  13. Xia, H., Duclos, S.J., Ruoff, A.L., and Vohra, Y.K., New high pressure phase transition in zirconium metal, Phys. Rev. Lett., 1990, vol. 64, pp. 204–207.

    Article  CAS  Google Scholar 

  14. Sikka, S.K., Vohra, Y.K., and Chidambaram, R., Omega phase in materials, Progr. Mater. Sci., 1982, vol. 27, pp. 245–310.

    Article  CAS  Google Scholar 

  15. Ungar, T., Gubicza, J., Hanak, P., and Alexandrov, I., Densities and character of dislocations and size-distribution of subgrains in deformed metals by X-rays diffraction profile analysis, Mater. Sci. Eng., A, 2001, vols. 319–321, pp. 274–278.

    Article  Google Scholar 

  16. Langmayr, F., Fratzl, P., Vogl, G., and Miekeley, W., Crossover from ω-phase to α-phase precipitation in bcc Ti–Mo, Phys. Rev. B, 1994, vol. 49, no. 17, pp. 11759–11766.

    Article  CAS  Google Scholar 

  17. Devaraj, A., Nag, S., Srinivasan, R., Williams, R.E.A., Banerjee, S., and Banerjee, R., Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys, Acta Mater., 2012, vol. 60, pp. 596–609.

    Article  CAS  Google Scholar 

  18. Talling, R.J., Dashwood, R.J., Jackson, M., and Dye, D., On the mechanism of superelasticity in Gum metal, Acta Mater., 2009, vol. 5, pp. 1188–1198.

    Article  Google Scholar 

  19. Kim, H.S., Hong, S.I., and Kim, S.J., On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles, J. Mater. Process. Technol., 2001, vol. 112, no. 1, pp. 109–112.

    Article  Google Scholar 

  20. Chen, X., Yan, J., and Karlsson, A.M., On the determination of residual stress and mechanical properties by indentation, Mater. Sci. Eng., A, 2006, vol. 416, nos. 1–2, pp. 139–149.

    Article  Google Scholar 

  21. Chawla, K.K., On the applicability of the “rule-of-mixtures” to the strength properties of metal–matrix composites, Rev. Bras. Fis., 1974, vol. 4, no. 3, pp. 411–418.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Semenova.

Additional information

Original Russian Text © S.A. Gatina, I.P. Semenova, E.V. Ubyyvovk, R.Z. Valiev, 2017, published in Materialovedenie, 2017, No. 3, pp. 30–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatina, S.A., Semenova, I.P., Ubyyvovk, E.V. et al. Phase Transformations, Strength, and Modulus of Elasticity of Ti–15Mo Alloy Obtained by High-Pressure Torsion. Inorg. Mater. Appl. Res. 9, 14–20 (2018). https://doi.org/10.1134/S2075113318010136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318010136

Keywords

Navigation