Skip to main content
Log in

Effect of the grain size on accumulation of scalar density of dislocations and its components in low-alloy Cu–Al

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The dislocation structure of deformed polycrystal Cu–Al alloys was studied by the TEM method. Measurement and separation of the scalar densities (〈ρ〉) by components were carried out: density (ρG) of the geometrically necessary dislocations (GND) and density (ρS) of the statistically stored dislocations (SSD). Effect of the grain size on the GND and SSD accumulation was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashby, M.F., The deformation of plastically nonhomogeneous materials, Philos. Mag., 1970, vol. 21, pp. 399–424.

    Article  CAS  Google Scholar 

  2. Mughrabi, H., The effect of geometrically necessary dislocations on the flow stress of deformed crystals containing a heterogeneous dislocation distribution, Mater. Sci. Eng., A, 2001, vols. 319–321, pp. 139–143.

    Article  Google Scholar 

  3. Koneva, N.A., Trishkina, L.I., and Kozlov Ed.V., Scalar dislocation density and its components accumulating at deformation in low-alloyed solid solutions of Cu–Al, Fundam. Probl. Sovrem. Materialoved., 2011, vol. 8, no. 1, pp. 52–60.

    Google Scholar 

  4. Kozlov, E.V., Trishkina, L.I., Cherkasova, T.V., and Koneva, N.A., Geometrically necessary dislocations in FCC polycrystalline metallic materials on the mesoscale, Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, no. 5, pp. 670–672.

    Article  CAS  Google Scholar 

  5. Thomas, G., Transmission Electron Microscopy of Metals, New York: Wiley, 1962.

    Google Scholar 

  6. Utevskii, L.M., Difraktsionnaya elektronnaya mikroskopiya v metallovedenii (Diffraction Electron Microscopy in Metal Science), Moscow: Metallurgiya, 1973.

    Google Scholar 

  7. Saltykov, S.A., Stereometricheskaya metallografiya (Stereometric Metallography), Moscow: Metallurgiya, 1970.

    Google Scholar 

  8. Howie, A. and Swaan, P.R., Direct measurements of stacking-fault energies from observations of dislocation nodes, Philos. Mag., 1961, vol. 6, pp. 1215–1226.

    Article  CAS  Google Scholar 

  9. Hirsch, P.B., Observation of dislocation in metals by transmission electron microscopy, J. Inst. Met. (London), 1959, vol. 87, p.406.

    CAS  Google Scholar 

  10. Koneva, N.A., Lychagin, D.V., Trishkina, L.I., and Kozlov, E.V., Band substructure in FCC single-phase alloys. Dislinations and rotational deformation of solids, XIII Vsesoyuznaya konferentsiya po elektronnoi mikroskopii, Tezisy dokladov (XIII All-Union Conf. on Electron Microscopy, Abstracts of Papers), Sumy, 1987, part 2, pp. 333–335.

    Google Scholar 

  11. Koneva, N.A., Kozlov, E.V., Trishkina, L.I., and Lychagin, D.V. Long-range stress fields, curvature-torsion of the crystal lattice and the stage of plastic deformation. Measurements and results, in Novye metody v fizike i mekhanike deformiruemogo tverdogo tela (Advanced Methods in Physics and Mechanics of Deformable Solids), Panin, V.E., Ed., Tomsk: Tomsk. Gos. Univ., 1990, part 1, pp. 83–93.

    Google Scholar 

  12. Courtney, T.H., Mechanical Behavior of Materials, Boston: McGraw-Hill, 2000.

    Google Scholar 

  13. Koneva, N.A., Kiseleva, S.F., and Popova, N.A., Analysis of the energy density stored in the plastic deformation of an isotropic body by the curvature-torsion of the crystal lattice, Fundam. Probl. Sovrem. Materialoved., 2011, vol. 8, no. 3, pp. 34–41.

    Google Scholar 

  14. Orlov. A.N., Dependence of the dislocation density on the magnitude of plastic deformation and grain size, Fiz. Met. Metalloved., 1977, vol. 44, no. 5, pp. 966–970.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Koneva.

Additional information

Original Russian Text © N.A. Koneva, L.I. Trishkina, T.V. Cherkasova, E.V. Kozlov, 2017, published in Materialovedenie, 2017, No. 1, pp. 12–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koneva, N.A., Trishkina, L.I., Cherkasova, T.V. et al. Effect of the grain size on accumulation of scalar density of dislocations and its components in low-alloy Cu–Al. Inorg. Mater. Appl. Res. 8, 566–572 (2017). https://doi.org/10.1134/S207511331704013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511331704013X

Keywords

Navigation