Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 344–347 | Cite as

High-temperature oxidation of nickel using oxidative constructing approach

  • V. Yu. Zufman
  • S. V. Shevtsov
  • A. I. Ogarkov
  • I. A. Kovalev
  • K. B. Kuznetsov
  • A. A. Ashmarin
  • N. A. Ovsyannikov
  • N. N. Dergunova
  • S. K. Rodionova
  • A. S. Chernyavskii
  • K. A. Solntsev
New Methods of Production and Treatment of Materials

Abstract

The kinetics and structural-phase behavior of the high-temperature oxidation of nickel are considered. It is found that the kinetics of high-temperature oxidation of nickel using the oxidative constructing approach is described by a parabolic law. The resulting compact bunsenite ceramic has a high adhesion to the metal surface. The presence of a gradient penetration of oxide inclusions in the porous structure of metal leads to a blurring of the phase boundary. It is shown that the limiting stage of the nickel oxidation process in the range of 1250–1400°С is nickel oxide dissociation with formation of free ions.

Keywords

nickel nickel oxide bunsenite oxidative constructing oxidation kinetics structure hardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gulbransen, E.A. and Andrew, K.F., The kinetics of oxidation of high purity nickel, J. Electrochem. Soc., 1954, vol. 101, no. 3, pp. 128–140.CrossRefGoogle Scholar
  2. 2.
    Fueki, K. and Wagner, J.B., Discussion of “Studies of the oxidation of nickel in the temperature range of 900 to 1400°C,” J. Electrochem. Soc., 1965, vol. 112, no. 4, pp. 384–388.Google Scholar
  3. 3.
    Kofstad, P.K., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.Google Scholar
  4. 4.
    O’Keeffe, M. and Moore, W.J., Diffusion of oxygen in single crystals of nickel oxide, J. Phys. Chem., 1961, vol. 65, pp. 1438–1439.CrossRefGoogle Scholar
  5. 5.
    Solntsev, K.A., Buslaev, Yu.A., and Shustorovich, E.M., Oxidative constructing of thin-walled ceramics (OCTC), Dokl. Chem., 2001, vol. 378, nos. 4–6, pp. 143–149.CrossRefGoogle Scholar
  6. 6.
    Solntsev, K.A., Zufman, V.Yu., Aladev, N.A., Shevtsov, S.V., Chernyavskii, A.S., and Stetsovskii, A.P., Titanium-to-rutile oxidation kinetics in the direct-oxidation fabrication of thin wall ceramics, Inorg. Mater., 2008, vol. 44, no. 8, pp. 856–862.CrossRefGoogle Scholar
  7. 7.
    Lindner, R. and Akerstrom, A., Diffusion of nickel-63 in nickel oxide (NiO), Discuss. Faraday Soc., 1957, vol. 23, pp. 133–136.CrossRefGoogle Scholar
  8. 8.
    Babichev, A.P., Babushkina, N.A., Bratkovskii, A.M., et al., Fizicheskie velichiny: Spravochnik (Physical Quantities: Handbook), Grigor’ev, I.S. and Meilikhova, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. Yu. Zufman
    • 1
  • S. V. Shevtsov
    • 1
  • A. I. Ogarkov
    • 1
  • I. A. Kovalev
    • 1
  • K. B. Kuznetsov
    • 1
  • A. A. Ashmarin
    • 1
  • N. A. Ovsyannikov
    • 1
  • N. N. Dergunova
    • 1
  • S. K. Rodionova
    • 1
  • A. S. Chernyavskii
    • 1
  • K. A. Solntsev
    • 1
  1. 1.Baikov Institute of Metallurgy and Material ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations