Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 222–228 | Cite as

Numerical simulation of metrological characteristics of cosmic radiation detectors

  • I. A. Zolotarev
  • L. S. Novikov
  • V. I. Osedlo
  • V. I. Tulupov
  • N. P. Chirskaya
Materials of Aeronautic and Space Engineering


In this paper, we describe the methods and results of mathematical simulation of the interaction between cosmic rays and detectors. This has increased the accuracy of determining the level of radiation impact on materials and components of spacecraft. The application of the results obtained in the design and production of advanced spacecraft will significantly increase the reliability and extend the service time under the cosmic radiation exposure.


cosmic rays semiconductor detector calibration event selection mathematical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vette, J., The AE-8 Trapped Electron Model Environment, NASA Report NSSDC 91-24, Hampton, VA: NASA, 1991.Google Scholar
  2. 2.
    Sawyer D.M. and Vette J.I. AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum, NASA Report NSSDC/WDC-A-R&S 76-06, Hampton, VA: NASA, 1976.Google Scholar
  3. 3.
    Gal’perin, Yu.I., Gorn, L.S., and Khazanov, B.I., Izmerenie radiatsii v kosmose (Measurement of Radiation in Space), Moscow: Atomizdat, 1972.Google Scholar
  4. 4.
    Vlasova, N.A., Novikov, L.S., Rubinshtein, I.A., Spasskii, A.V., and Chirskaya, N.P., Metrological characteristics of space radiation sensors, Fiz. Khim. Obrab. Mater., 2013, no. 6, pp. 32–39.Google Scholar
  5. 5.
    Agostinelli, S., Allison, J., Forti, A., et al., GEANT4— a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 506, no. 3, pp. 250–303.CrossRefGoogle Scholar
  6. 6.
    Kintali, K. and Gu, Y., Model-based design with simulink, HDL coder, and Xilinx system Generator for DSP. Scholar
  7. 7.
    Ivanchenko, V., Apostolakis, J., Bagulya, A., Abdelouahed, H.B., Black, R., et al., Recent improvements in Geant4 electromagnetic physics models and interfaces, Progr. Nucl. Sci. Technol., 2011, vol. 2, pp. 898–903.CrossRefGoogle Scholar
  8. 8.
    Geant4 Physics Reference Manual, Scholar
  9. 9.
    Voevodin, V.V., Zhumatii, S.A., Sobolev, S.I., Antonov, A.S., et al., Lomonosov supercomputer created at Moscow State University, Otkrytye Sist., 2012, no. 7, pp. 36–39.Google Scholar
  10. 10.
    Panasyuk, M.I., Podzolko, M.V., Kovtyukh, A.S., Brilkov, I.A., Vlasova, N.A., Kalegaev, V.V., Osedlo, V.I., Tulupov, V.I., and Yashin, I.V., Operational radiation monitoring in near-Earth space based on the system of multiple small satellites, Cosmic Res., 2015, vol. 53, no. 6, pp. 423–429.CrossRefGoogle Scholar
  11. 11.
    Maindonald J. and Braun W.J. Data Analysis and Graphics Using R–an Example-Based Approach, Cambridge: Cambridge Univ. Press, 2010, 3d ed.CrossRefGoogle Scholar
  12. 12.
    Getselev, I.V., Tulupov, V.I., and Shcherbovskii, B.Ya., The device for on-board control of radiation level of spacecrafts, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Vozdeistv. Radioelektron. Appar., 2006, nos. 3–4, pp. 89–91.Google Scholar
  13. 13.
    R: A Language and Environment for Statistical Computing, Vienna: R Found. Stat. Comp., 2012. ISBN 3-900051-07-0. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Zolotarev
    • 1
  • L. S. Novikov
    • 1
  • V. I. Osedlo
    • 1
  • V. I. Tulupov
    • 1
  • N. P. Chirskaya
    • 1
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations