Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 275–278 | Cite as

Attenuation of photon and neutron radiation using iron–magnetite–serpentinite radiation-protective composite

  • R. N. Yastrebinskii
  • G. G. Bondarenko
  • V. I. Pavlenko
Materials of Power Engineering and RadiationResistant Materials

Abstract

The attenuation coefficients of photon and neutron beams as they pass through the iron–magnetite–serpentinite cement concrete (IMSCC), which is used for biological protection of nuclear reactors, are calculated. Compton scattering makes the main contribution to attenuation of the beam at γ-photon energies lying in the range of 0.2–11 MeV, while at photon energies higher than 11 MeV the main contribution to attenuation of beam is made by the effect of formation of electron–positron couples. It is shown by assessing the influence of fast neutrons that, despite the low density of hydrogen in the composite under study, the contribution of hydrogen to the attenuation coefficient of the neutron flux is very important. It is connected both with the high hydrogen concentration and the fact that higher kinetic energy is transferred to light atomic nuclei than to heavy ones under neutron irradiation.

Keywords

magnetite concentrate serpentine concrete photon radiation neutron radiation radiation attenuation coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novikov, V.M., Slesarev, I.S., and Alekseev, P.N., Atomnye reaktory povyshennoi bezopasnosti (Nuclear Reactors with Improved Safety), Moscow: Energoatomizdat, 1993.Google Scholar
  2. 2.
    Egorov, Yu.A. and Mashkovich, V.P., Radiatsionnaya bezopasnost’ i zashchita AES (Radiation Safety and Insulation of NPP), Moscow: Atomizdat, 1982.Google Scholar
  3. 3.
    Pospelov, V.P., Mirenkov, A.F., and Pokrovskii, S.G., Betony radiatsionnoi zashchity atomnykh elektrostantsii (Concretes for Radiation Protection of Nuclear Power Plants), Moscow: Avgust-Borg, 2006.Google Scholar
  4. 4.
    Goldstein, H., Fundamental Aspects of Reactor Shielding, Reading, MA: Addison-Wesley, 1959.Google Scholar
  5. 5.
    Matyukhin, P.V., Pavlenko, V.I., and Yastrebinskii, R.N., Composites resistant to the high-energy radiation, Vestn. Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2012, no. 2, pp. 25–27.Google Scholar
  6. 6.
    Yastrebinskii, R.N., Pavlenko, V.I., Matyukhin, P.V., and Chetverikov, N.A., Composites for protection against gamma radiation, Vestn. Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2011, no. 3, pp. 17–20.Google Scholar
  7. 7.
    Matyukhin, P.V., Yastrebinskaya, A.V., and Pavlenko, Z.V., Use of the modified iron ore materials to ensure the constructional biological protection of nuclear reactors, Usp. Sovrem. Estestvozn., 2015, no. 9, part 3, pp. 507–510.Google Scholar
  8. 8.
    Bondarenko, G.G., Radiatsionnaya fizika, struktura i prochnost’ tverdykh tel (Radiation Physics, Structure, and Strength of Solids), Moscow: Laboratoriya Znanii, 2016.Google Scholar
  9. 9.
    Akhiezer, A.I. and Berestetskii, V.B., Kvantovaya elektrodinamika (Quantum Electrodynamics), Moscow: Nauka, 1981.Google Scholar
  10. 10.
    Pshenichnyi, G.A., Vzaimodeistvie izluchenii s veshchestvom i modelirovanie zadach yadernoi geofiziki (Interaction of Radiation with Substance and Modeling of Problems in Nuclear Geophysics), Moscow: Energoizdat, 1982.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. N. Yastrebinskii
    • 1
  • G. G. Bondarenko
    • 2
  • V. I. Pavlenko
    • 1
  1. 1.Belgorod State Technological UniversityBelgorodRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations