Comparison of the basic physical and chemical properties of complex oxides LiNi x Mn y Co1–xy O2 (0.3 ≤ x ≤ 0.6; 0.2 ≤ y ≤ 0.4) obtained by different methods

Abstract

Cathode materials in the form of complex metal oxides LiNi x Mn y Co1–xy O2 (0.3 ≤ x ≤ 0.6; 0.2 ≤ y ≤ 0.4) obtained by different methods, such as a solid state method and a method of thermal destruction of organometallic compounds in oil, are studied. The results of the elemental analysis, TGA/DSC, XRD, SEM, TEM, and electrochemical tests are presented. It is found that complex metal oxides obtained by the method of thermal destruction of organometallic compounds in oil are composed of primary nanocrystallites (up to 100 nm) coated by a nanoscale carbon layer that can significantly improve the electrochemical characteristics of the basic lithium-ion battery based thereon.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Matsuda, K. and Taniguchi, I., Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis, J. Power Sources, 2004, vol. 132, pp. 156–160.

    CAS  Article  Google Scholar 

  2. 2.

    Whittingham, M.S., Lithium batteries and cathode materials, Chem. Rev., 2004, vol. 104, pp. 4271–4301.

    CAS  Article  Google Scholar 

  3. 3.

    Armand, M. and Tarascon, J.M., Building better batteries, Nature, 2008, vol. 451, pp. 652–657.

    CAS  Article  Google Scholar 

  4. 4.

    Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3(1–x)LiMn0.333Ni0.333Co0.333O2 (0 = x = 0.7), Chem. Mater., 2008, vol. 20, pp. 6095–6072.

    CAS  Article  Google Scholar 

  5. 5.

    Yoshio, M. and Noguchi, H., Preparation and properties of LiNi1–xy MnxCoyO2 as a cathode for lithium ion batteries, J. Power Sources, 2000, vol. 90, pp. 176–181.

    CAS  Article  Google Scholar 

  6. 6.

    Lee, D.K. and Park, S.H., High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method, J. Power Sources, 2006, vol. 162, pp. 1346–1350.

    CAS  Article  Google Scholar 

  7. 7.

    Lengyel, M. and Atlas, G., Effects of synthesis conditions on the physical and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by spray pyrolysis, J. Power Sources, 2014, vol. 262, pp. 286–296.

    CAS  Article  Google Scholar 

  8. 8.

    Deng, H. and Belharouak, I., Effect of cobalt incorporation and lithium enrichment in lithium nickel manganese oxides, J. Electrochem. Soc., 2010, vol. 157, pp. 776–781.

    Article  Google Scholar 

  9. 9.

    Sun, Y. and Yang, Y., Synthesis and electrochemical characterization of LiNi0.5Mn1.5O4 by one-step precipitation method with ammonium carbonate as precipitating agent, J. Power Sources, 2010, vol. 195, pp. 4322–4329.

    CAS  Article  Google Scholar 

  10. 10.

    Voronov, V.A. and Gubin, S.P., Preparation, structure, and properties of carbon coated Li1.2Ni0.2Mn0.4Co0.2O2 nanoparticles, Inorg. Mater., 2014, vol. 50, no. 4, pp. 409–414.

    CAS  Article  Google Scholar 

  11. 11.

    Voronov, V.A. and Gubin, S.P., Mixed oxide nanoparticles in a polyethylene matrix, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1151–1156.

    CAS  Article  Google Scholar 

  12. 12.

    Gubin, S.P., Yurkov, G.Yu., and Kosobudsky, I.D., Nanomaterials based on metal containing nanoparticles in polyethylene and other carbon chain polymers, Int. J. Mater. Prod. Technol., 2005, vol. 23, pp. 2–9.

    CAS  Article  Google Scholar 

  13. 13.

    Gubin, S.P. and Yurkov, G.Yu., Nanomaterial for high-density magnetic data storage, Russ. J. Inorg. Chem., 2002, vol. 47, suppl. 1, pp. 32–38.

    Google Scholar 

  14. 14.

    Noh, H.J., Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3,0.5,0.6,0.7,0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 2013, vol. 233, pp. 121–130.

    CAS  Article  Google Scholar 

  15. 15.

    Cho, Y.H., Jang, D., Yoon, J., and Kim, H., Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction, J. Alloys Compd., 2013, vol. 562, pp. 219–223.

    CAS  Article  Google Scholar 

  16. 16.

    Ohzuku, T. and Makimura, Y., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for LIB, Chem. Lett., 2001, vol. 30, no. 7, pp. 642–643.

    Article  Google Scholar 

  17. 17.

    He, Y.S., Ma, Z.F., and Jiang, Y., Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method, J. Power Sources, 2007, vol. 163, no. 2, pp. 1053–1058.

    CAS  Article  Google Scholar 

  18. 18.

    Ju, J.H. and Ryu, K.S., Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries, J. Alloys Compd., 2011, vol. 509 (30), pp. 7985–7992.

    CAS  Article  Google Scholar 

  19. 19.

    Sun, Y., Ouyang, C., Wang, Z., Huang, X. and Chen, L., Effect of Co content on rate performance of Li0.5–x Co2xNi0.5–x O2 cathode materials for lithium-ion batteries, J. Electrochem. Soc., 2004, vol. 151, pp. 504–509.

    Article  Google Scholar 

  20. 20.

    Wang, Zh., Dong, H., and Chen, L., Understanding mechanism of improved electrochemical performance of surface modified LiCoO2, J. Solid State Ionics, 2004, vol. 175, pp. 239–242.

    CAS  Article  Google Scholar 

  21. 21.

    Cheglakov, A.V., Kornilov, D.Yu., Voronov, V.A., Gubin, S.P., and Geller, M.M., RF Patent 2536649, 2013.

  22. 22.

    Hwang, B.J., Chen, C.Y., and Cheng, M.Y., Mechanism study of enhanced electrochemical performance of ZrO-coated LiCoO2 in high voltage region, J. Power Sources, 2010, vol. 195, no. 13, pp. 4255–4265.

    CAS  Article  Google Scholar 

  23. 23.

    Valanarasu, S. and Chandramohan, R., Improvement of the cycle life of LiCoO2 powder by Sr doping, J. Alloys Compd., 2010, vol. 494, pp. 434–438.

    CAS  Article  Google Scholar 

  24. 24.

    Cao, Q. and Zhang, H.P., A novel carbon-coated LiCoO2 as cathode material for lithium ion battery, Electrochem. Commun., 2007, vol. 9, pp. 1228–1234.

    CAS  Article  Google Scholar 

  25. 25.

    Voronov, V.A., Shvetsov, A.O., and Gubin, S.P., Influence of cathode material producing method LiNi0.33Mn0.33Co0.33O2 on the electrochemical characteristics of lithium-ion battery, J. Inorg. Chem., 2016, vol. 52, no. 9, pp. 946–952.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Voronov.

Additional information

Original Russian Text © V.A. Voronov, A.O. Shvetsov, S.P. Gubin, A.V. Cheglakov, D.Yu. Kornilov, A.S. Karaseva, E.S. Krasnova, S.V. Tkachev, 2016, published in Perspektivnye Materialy, 2016, No. 8, pp. 5–15.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voronov, V.A., Shvetsov, A.O., Gubin, S.P. et al. Comparison of the basic physical and chemical properties of complex oxides LiNi x Mn y Co1–xy O2 (0.3 ≤ x ≤ 0.6; 0.2 ≤ y ≤ 0.4) obtained by different methods. Inorg. Mater. Appl. Res. 8, 229–237 (2017). https://doi.org/10.1134/S2075113317020228

Download citation

Keywords

  • cathode materials
  • complex transition metal oxides
  • core/shell nanoparticles
  • method of thermal destruction of organometallic compounds
  • solid state method