Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 229–237 | Cite as

Comparison of the basic physical and chemical properties of complex oxides LiNi x Mn y Co1–xy O2 (0.3 ≤ x ≤ 0.6; 0.2 ≤ y ≤ 0.4) obtained by different methods

  • V. A. Voronov
  • A. O. Shvetsov
  • S. P. Gubin
  • A. V. Cheglakov
  • D. Yu. Kornilov
  • A. S. Karaseva
  • E. S. Krasnova
  • S. V. Tkachev
Materials for Electronics Technology
  • 58 Downloads

Abstract

Cathode materials in the form of complex metal oxides LiNi x Mn y Co1–xy O2 (0.3 ≤ x ≤ 0.6; 0.2 ≤ y ≤ 0.4) obtained by different methods, such as a solid state method and a method of thermal destruction of organometallic compounds in oil, are studied. The results of the elemental analysis, TGA/DSC, XRD, SEM, TEM, and electrochemical tests are presented. It is found that complex metal oxides obtained by the method of thermal destruction of organometallic compounds in oil are composed of primary nanocrystallites (up to 100 nm) coated by a nanoscale carbon layer that can significantly improve the electrochemical characteristics of the basic lithium-ion battery based thereon.

Keywords

cathode materials complex transition metal oxides core/shell nanoparticles method of thermal destruction of organometallic compounds solid state method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matsuda, K. and Taniguchi, I., Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis, J. Power Sources, 2004, vol. 132, pp. 156–160.CrossRefGoogle Scholar
  2. 2.
    Whittingham, M.S., Lithium batteries and cathode materials, Chem. Rev., 2004, vol. 104, pp. 4271–4301.CrossRefGoogle Scholar
  3. 3.
    Armand, M. and Tarascon, J.M., Building better batteries, Nature, 2008, vol. 451, pp. 652–657.CrossRefGoogle Scholar
  4. 4.
    Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3(1–x)LiMn0.333Ni0.333Co0.333O2 (0 = x = 0.7), Chem. Mater., 2008, vol. 20, pp. 6095–6072.CrossRefGoogle Scholar
  5. 5.
    Yoshio, M. and Noguchi, H., Preparation and properties of LiNi1–xyMnxCoyO2 as a cathode for lithium ion batteries, J. Power Sources, 2000, vol. 90, pp. 176–181.CrossRefGoogle Scholar
  6. 6.
    Lee, D.K. and Park, S.H., High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method, J. Power Sources, 2006, vol. 162, pp. 1346–1350.CrossRefGoogle Scholar
  7. 7.
    Lengyel, M. and Atlas, G., Effects of synthesis conditions on the physical and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by spray pyrolysis, J. Power Sources, 2014, vol. 262, pp. 286–296.CrossRefGoogle Scholar
  8. 8.
    Deng, H. and Belharouak, I., Effect of cobalt incorporation and lithium enrichment in lithium nickel manganese oxides, J. Electrochem. Soc., 2010, vol. 157, pp. 776–781.CrossRefGoogle Scholar
  9. 9.
    Sun, Y. and Yang, Y., Synthesis and electrochemical characterization of LiNi0.5Mn1.5O4 by one-step precipitation method with ammonium carbonate as precipitating agent, J. Power Sources, 2010, vol. 195, pp. 4322–4329.CrossRefGoogle Scholar
  10. 10.
    Voronov, V.A. and Gubin, S.P., Preparation, structure, and properties of carbon coated Li1.2Ni0.2Mn0.4Co0.2O2 nanoparticles, Inorg. Mater., 2014, vol. 50, no. 4, pp. 409–414.CrossRefGoogle Scholar
  11. 11.
    Voronov, V.A. and Gubin, S.P., Mixed oxide nanoparticles in a polyethylene matrix, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1151–1156.CrossRefGoogle Scholar
  12. 12.
    Gubin, S.P., Yurkov, G.Yu., and Kosobudsky, I.D., Nanomaterials based on metal containing nanoparticles in polyethylene and other carbon chain polymers, Int. J. Mater. Prod. Technol., 2005, vol. 23, pp. 2–9.CrossRefGoogle Scholar
  13. 13.
    Gubin, S.P. and Yurkov, G.Yu., Nanomaterial for high-density magnetic data storage, Russ. J. Inorg. Chem., 2002, vol. 47, suppl. 1, pp. 32–38.Google Scholar
  14. 14.
    Noh, H.J., Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3,0.5,0.6,0.7,0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 2013, vol. 233, pp. 121–130.CrossRefGoogle Scholar
  15. 15.
    Cho, Y.H., Jang, D., Yoon, J., and Kim, H., Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction, J. Alloys Compd., 2013, vol. 562, pp. 219–223.CrossRefGoogle Scholar
  16. 16.
    Ohzuku, T. and Makimura, Y., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for LIB, Chem. Lett., 2001, vol. 30, no. 7, pp. 642–643.CrossRefGoogle Scholar
  17. 17.
    He, Y.S., Ma, Z.F., and Jiang, Y., Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method, J. Power Sources, 2007, vol. 163, no. 2, pp. 1053–1058.CrossRefGoogle Scholar
  18. 18.
    Ju, J.H. and Ryu, K.S., Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries, J. Alloys Compd., 2011, vol. 509 (30), pp. 7985–7992.CrossRefGoogle Scholar
  19. 19.
    Sun, Y., Ouyang, C., Wang, Z., Huang, X. and Chen, L., Effect of Co content on rate performance of Li0.5–xCo2xNi0.5–xO2 cathode materials for lithium-ion batteries, J. Electrochem. Soc., 2004, vol. 151, pp. 504–509.CrossRefGoogle Scholar
  20. 20.
    Wang, Zh., Dong, H., and Chen, L., Understanding mechanism of improved electrochemical performance of surface modified LiCoO2, J. Solid State Ionics, 2004, vol. 175, pp. 239–242.CrossRefGoogle Scholar
  21. 21.
    Cheglakov, A.V., Kornilov, D.Yu., Voronov, V.A., Gubin, S.P., and Geller, M.M., RF Patent 2536649, 2013.Google Scholar
  22. 22.
    Hwang, B.J., Chen, C.Y., and Cheng, M.Y., Mechanism study of enhanced electrochemical performance of ZrO-coated LiCoO2 in high voltage region, J. Power Sources, 2010, vol. 195, no. 13, pp. 4255–4265.CrossRefGoogle Scholar
  23. 23.
    Valanarasu, S. and Chandramohan, R., Improvement of the cycle life of LiCoO2 powder by Sr doping, J. Alloys Compd., 2010, vol. 494, pp. 434–438.CrossRefGoogle Scholar
  24. 24.
    Cao, Q. and Zhang, H.P., A novel carbon-coated LiCoO2 as cathode material for lithium ion battery, Electrochem. Commun., 2007, vol. 9, pp. 1228–1234.CrossRefGoogle Scholar
  25. 25.
    Voronov, V.A., Shvetsov, A.O., and Gubin, S.P., Influence of cathode material producing method LiNi0.33Mn0.33Co0.33O2 on the electrochemical characteristics of lithium-ion battery, J. Inorg. Chem., 2016, vol. 52, no. 9, pp. 946–952.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Voronov
    • 1
    • 2
  • A. O. Shvetsov
    • 1
  • S. P. Gubin
    • 1
    • 2
  • A. V. Cheglakov
    • 1
  • D. Yu. Kornilov
    • 1
  • A. S. Karaseva
    • 1
  • E. S. Krasnova
    • 1
  • S. V. Tkachev
    • 1
  1. 1.LLC AkKo LabMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations