Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 279–285 | Cite as

Microstructure of Ti–5Al–4V–2Zr alloy in the initial condition and after irradiation with titanium ions

  • S. V. Rogozhkin
  • A. A. Nikitin
  • N. N. Orlov
  • T. V. Kulevoy
  • P. A. Fedin
  • O. A. Korchuganova
  • M. A. Kozodaev
  • A. L. Vasiliev
  • A. S. Orekhov
  • N. N. Kolobylina
  • V. P. Leonov
  • I. A. Schastlivaya
Materials of Power Engineering and RadiationResistant Materials

Abstract

Chemical analysis of phases and inclusions in a specimen of Ti–5Al–4V–2Zr titanium alloy in the initial state and after irradiation with titanium ions up to the radiation damage dose of ~1 dpa at 260°C was carried out and the microstructure was studied. Microstructural analysis was performed by the methods of transmission electron microscopy, energy dispersion X-ray spectroscopy, and atom probe tomography. Results of the chemical analysis of the matrix α phase and inclusions of β phase grains are given. It is shown that the α phase is enriched in aluminum up to 10 at % and the β phase is enriched in vanadium up to 20 at % in the initial state in the Ti–5Al–4V–2Zr alloy. Heavy ion irradiation induces the formation of dislocation loops of 3 to 12 nm with the number density of ~1022 m–3. A high number density (up to ~1024 m–3) of nanoscale precipitations with the average size of ~2 nm is formed during alloy irradiation in the α phase.

Keywords

titanium alloy ion irradiation radiation-induced defects solid solution decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raghunathan, S.L., Stapleton, A.M., Dashwood, R.J., Jackson, M., and Dye, D., Micromechanics of Ti–10V–2Fe–3Al: in situ synchrotron characterization and modeling, Acta Mater., 2007, vol. 55, no. 20, pp. 6861–6872.CrossRefGoogle Scholar
  2. 2.
    Gurrappa, I., Characterization of titanium alloy Ti–6Al–4V for chemical, marine and industrial applications, Mater. Charact., 2003, vol. 51, pp. 131–139.CrossRefGoogle Scholar
  3. 3.
    Davis, J.W., Ulrickson, M.A., and Causey, R.A., Use of titanium in fusion components, J. Nucl. Mater., 1994, vol. 212–215, pp. 813–817.Google Scholar
  4. 4.
    Rodchenkov, B.S., Evseev, M.V., Strebkov, Yu.S., Sinelnikov, L.P., and Shushlebin, V.V., Properties of unirradiated and irradiated Ti–6Al–4V alloy for ITER flexible connectors, J. Nucl. Mater., 2011, vol. 417, pp. 928–931.CrossRefGoogle Scholar
  5. 5.
    Morrissey, D.J., Status of the FRIB project with a new fragment separator, J. Phys. Conf. Ser., 2011, vol. 267, p. 012001.Google Scholar
  6. 6.
    Parshin, A.M. and Muratov, O.E., Use of titanium alloys for reactor pressure vessels, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., 2005, no. 3 (86), pp. 179–181.Google Scholar
  7. 7.
    Rodchenkov, B.S., Kozlov, A.V., Kuznetsov, Yu.G., Kalinin, G.M., and Strebkov, Yu.S., Irradiation behavior of Ti–4Al–2V (PT-3B) alloy for ITER blanket modules flexible attachment, J. Nucl. Mater., 2007, vols. 367–370, pp. 1312–1315.CrossRefGoogle Scholar
  8. 8.
    Tähtinen, S., Moilanen, P., Singh, B.N., and Edwards, D.J., Tensile and fracture toughness properties of unirradiated and neutron irradiated titaniumalloys, J. Nucl. Mater., 2002, vols. 307–311, pp. 416–420.CrossRefGoogle Scholar
  9. 9.
    Tähtinen, S., Moilanen, P., and Singh, B.N., Effect of displacement dose and irradiation temperature on tensile and fracture toughness properties of titaniumalloys, J. Nucl. Mater., 2007, vols. 367–370, pp. 627–632.CrossRefGoogle Scholar
  10. 10.
    Wilkes, P. and Kulcinski, G.L., Heavy ion irradiation of a Ti–6Al–4V alloy, J. Nucl. Mater., 1978, vol. 78, pp. 427–430.CrossRefGoogle Scholar
  11. 11.
    Amroussia, A., Avilov, M., Boehlert, C.J., Durantel, F., Grygiel, C., Mittig, W., Monnet, I., and Pellemoine, F., Swift heavy ion irradiation damage in Ti–6Al–4V and Ti–6Al–4V–1B: Study of the microstructure and mechanical properties, Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, vol. 365, pp. 515–521.CrossRefGoogle Scholar
  12. 12.
    Dayal, P., Bhattacharyya, D., Mook, W.M., Fu, E.G., Wang, Y.-Q., Carr, D.G., Anderoglu, O., Mara, N.A., Misra, A., Harrison, R.P., and Edwards, L., Effect of double ion implantation and irradiation by Ar and He ions on nanoindentation hardness of metallicalloys, J. Nucl. Mater., 2013, vol. 438, pp. 108–115.CrossRefGoogle Scholar
  13. 13.
    Oryshchenko, A.S., Leonov, V.P., and Schastlivaya, I.A., Low-activating titanium alloys for low-power reactor vessels, Titan, 2015, vol. 2 (47), pp. 25–30.Google Scholar
  14. 14.
    Oryshchenko, A.S., Gorynin, I.V., Leonov, V.P., and Schastlivaya, I.A., Titanium alloys for low and medium power reactor vessels, Vopr. Materialoved., 2014, no. 2 (78), pp. 199–210.Google Scholar
  15. 15.
    Rogozhkin, S.V., Aleev, A.A., Zaluzhnyi, A.G., Kuibida, R.P., Kulevoi, T.V., Nikitin, A.A., Orlov, N.N., Chalykh, B.B., and Shishmarev, V.B. Effect of irradiation by heavy ions on the nanostructure of perspective materials for nuclear power plants, Phys. Met. Metallogr., 2012, vol. 113, no. 2, pp. 200–211.Google Scholar
  16. 16.
    Kulevoy, T., Kuibeda, R., Kropachev, G., Kozlov, A., Chalyh, B., Aleev, A., Fertman, A., Nikitin, A., and Rogozhkin, S., ITEP MEVVA ion beam for reactor material investigation, Rev. Sci. Instrum., 2010, vol. 81, no. 2, p. 02B906.CrossRefGoogle Scholar
  17. 17.
    Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S.D., and Garner, F.A., On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res., Sect. B, 2013, vol. 310, pp. 75–80.CrossRefGoogle Scholar
  18. 18.
    Golden Book of Phase Transitions. Phase Transitions Database PTDB-2002, Wroclaw, 2002, vol. 1, pp. 1–123.Google Scholar
  19. 19.
    Hagi, T., Sato, Y., Yasuda, M., and Tanaka, K., Structure and phase diagram of Ti–V–H system at room temperature, Trans. Jpn. Inst. Met., 1987, vol. 28, no. 3, pp. 198–204.CrossRefGoogle Scholar
  20. 20.
    Kornilov, I.I., Titan (Titanium), Moscow: Nauka, 1975, pp. 64–65.Google Scholar
  21. 21.
    Kozhevnikov, O.A., Nesterova, E.V., Rybin, V.V., and Yarmolovich, I.I., Mechanical properties, fine structure, and micromechanisms of fracture in titanium a- alloys irradiated with neutrons, Met. Sci. Heat Treat., 1999, vol. 41, no. 9, pp. 412–416.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Rogozhkin
    • 1
    • 2
  • A. A. Nikitin
    • 1
    • 2
  • N. N. Orlov
    • 1
    • 2
  • T. V. Kulevoy
    • 1
  • P. A. Fedin
    • 1
  • O. A. Korchuganova
    • 1
    • 2
  • M. A. Kozodaev
    • 1
    • 2
  • A. L. Vasiliev
    • 3
    • 4
  • A. S. Orekhov
    • 3
    • 4
  • N. N. Kolobylina
    • 3
  • V. P. Leonov
    • 5
  • I. A. Schastlivaya
    • 5
  1. 1.State Scientific Center of the Russian FederationInstitute for Theoretical and Experimental Physics of National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.National Research Center “Kurchatov Institute”MoscowRussia
  4. 4.A. V. Shubnikov Institute of CrystallographyRussian Academy of ScienceMoscowRussia
  5. 5.Central Research Institute of Structural Materials “Prometey”St. PetersburgRussia

Personalised recommendations