Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 348–352 | Cite as

Influence of heat treatment parameters on the structure and mechanical properties of a titanium VT6 alloy in the submicrocrystalline state

New Methods of Production and Treatment of Materials

Abstract

The effect of additional annealing on the structure and mechanical properties of the titanium VT6 alloy in the submicrocrystalline state is studied. It is shown that the annealing at 833 K for 20 min does not significantly affect the mechanically properties of the alloy at room temperature. However, this annealing severely deteriorates the superplastic properties of the alloy. Annealing at 873 K for 5 min results in a sharp decrease in the strength properties of the alloy at room temperature (by about 20%). Nevertheless, the superplastic properties of the alloy after this annealing are the highest ones among those considered in this work. It is assumed that the state of grain boundaries plays the decisive role in the development of the superplastic flow of the VT6 alloy after three-dimensional pressing and subsequent annealing.

Keywords

titanium alloys submicrocrystalline structure severe plastic deformation mechanical properties superplasticity annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Valiev, R.Z. and Aleksandrov, I.V., Nanostrukturnye materially, podvergnutye intensivnoi plasticheskoi deformatsii (Transformation of Nanomaterials after Intensive Plastic Deformation), Moscow: Logos, 2000.Google Scholar
  2. 2.
    Kolobov, Yu.R., Valiev, R.Z., Grabovetskaya, G.P., et al., Zernogranichnaya diffuziya i svoistva nanostrukturnykh materialov (Grain-Boundary Diffusion and Properties of Nanomaterials), Novosibirsk: Nauka, 2001.Google Scholar
  3. 3.
    Meyers, M.A., Mishra, A., and Benson, D.J., Mechanical properties of nanocrystalline materials, Progr. Mater. Sci., 2006, vol. 51, pp. 427–556.CrossRefGoogle Scholar
  4. 4.
    Naydenkin, E.V., Ratochka, I.V., and Grabovetskaya, G.P., The aspects of practical application of ultrafine-grained titanium alloys produced severe plastic deformation, Mater. Sci. Forum, 2011, vols. 667–669, pp. 1183–1188.Google Scholar
  5. 5.
    Danilov, V.I., Eroshenko, A.Yu., Sharkeev, Yu.P., Orlova, D.V., and Zuev, L.B., Specific deformation and fracture of ultrafine grained Ti and Zr-based alloys, Fiz. Mezomekh., 2014, vol. 17, no. 4, pp. 77–86.Google Scholar
  6. 6.
    Chuvil’deev, V.N., Shchavleva, A.V., Nokhrin, A.V., Pirozhnikova, O.E., Gryaznov, M.Y., Lopatin, Y.G., Sysoev, A.N., Melekhin, N.V., Sakharov, N.V., Kopylov, V.I., and Myshlyaev, M.M., Influence of the grain size and structural state of grain boundaries on the parameter of low-temperature and high-rate superplasticity of nanocrystalline and microcrystalline alloys, Phys. Solid State, 2010, vol. 52, no. 5, pp. 1098–1106.CrossRefGoogle Scholar
  7. 7.
    Salishchev, G.A., Kudryavtsev, E.A., and Zherebtsov, S.V., Structural changes and the mechanical behavior of nanoalloy VT6 affected by low-temperature superplasticity, Nauch. Ved. Belgorod. Gos. Univ., Ser.: Mat. Fiz., 2012, no. 17, pp. 236–239.Google Scholar
  8. 8.
    Grabovetskaya, G.P., Stepanova, E.N., Ratochka, I.V., Mishin, I.P., and Zabudchenko, O.V., Effect of hydrogen on the development of superplastic deformation in the submicrocrystalline Ti–6Al–4V alloy, Mater. Sci. Forum, 2016, vols. 838–839, pp. 344–349.CrossRefGoogle Scholar
  9. 9.
    Vinokurov, V.A., Ratochka, I.V., Naidenkin, E.V., Mishin, I.P., and Rozhentseva, N.V., RF Patent 2388566, Byull. Izobret., 2010, no. 13.Google Scholar
  10. 10.
    Kozlov, E.V., Koneva, N.A., Zhdanov, A.V., et al., Structure and deformation resistance of FCC ultrafinegrained metals and alloys, Fiz. Mezomekh., 2004, vol. 7, no. 4, pp. 93–113.Google Scholar
  11. 11.
    Kozlov, E.V., Koneva, N.A., and Popova, N.A., Grain structure, geometrically necessary dislocations, and second-phase particles in polycrystals of micro- and mesolevels, Fiz. Mezomekh., 2009, vol. 12, no. 4, pp. 93–106.Google Scholar
  12. 12.
    Novikov, I.I. and Portnoi, V.K., Sverkhplastichnost’ splavov s ul’tramelkim zernom (The Superplasticity of Ultrafine-Grained Alloys), Moscow: Metallurgiya, 1981.Google Scholar
  13. 13.
    Kaibyshev, O.A., Sverkhplastichnost’ promyshlennykh splavov (Superplasticity of Industrial Alloys), Moscow: Metallurgiya, 1984.Google Scholar
  14. 14.
    Kolobov, Y.R., Ratochka, I.V., Ivanov, K.V., and Lipnitskii, A.G., Characteristic features of diffusion-controlled processes in ordinary and ultrafine-grained polycrystaline metals, Russ. Phys. J., 2004, vol. 47, no. 8, pp. 840–856.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations