Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 211–221 | Cite as

Laminated metal-polymeric materials in structural elements of aircraft

  • N. Yu. Podzhivotov
  • E. N. Kablov
  • V. V. Antipov
  • V. S. Erasov
  • N. Yu. Serebrennikova
  • M. R. Abdullin
  • M. V. Limonin
Materials of Aeronautic and Space Engineering
  • 35 Downloads

Abstract

Design, manufacture, and test results are presented for laminated metal-polymeric hybrid fragments of a wing panel made of high-strength aluminum-lithium alloy V-1469T1 and of single-directed laminated aluminum fiberglass SIAL-1-1R. It is shown that the principle “material–technology–structure” can be implemented, and we demonstrate it by example of designing the fragment of a hybrid wing panel beginning from choosing the optimal structure material for the stringer and the structure of hybrid skin and finishing by testing large-sized structure-like samples. We show that the results of strength calculations for fragments of the hybrid wing panel demonstrate good convergence according to static and repeated static tests of panel fragment. Calculations are performed according to different methods, including the finite element method. We show that the hybrid structures are better than the traditional structures made of aluminum alloys according to weight efficiency, which can run up to 10%, and according to bearing capacity, which can run up to 20%.

Keywords

laminated hybrid metal-polymeric materials SIAL design wing panel structure-like samples tests load-bearing capacity aluminum-lithium alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kablov, E.N., Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1, pp. 3–33.Google Scholar
  2. 2.
    Kablov, E.N., The strategic development of materials and technologies of their recycling until 2030, Aviats. Mater. Tekhnol., 2012, suppl., pp. 7–17.Google Scholar
  3. 3.
    Kablov, E.N., Materials for aerospace vehicles, Vse Mater., 2007, no. 5, pp. 7–27.Google Scholar
  4. 4.
    Panin, V.F. and Gladkov, Yu.A., Konstruktsii s zapolnitelem. Spravochnik (The Structures with Filler: Handbook), Moscow: Mashinostroenie, 1991.Google Scholar
  5. 5.
    Savin, S.P., Use of modern polymer composites in design of MS21 jet planes, Izv. Samar. Nauch. Tsentra Ross. Akad. Nauk, 2012, vol. 14, no. 4 (2), pp. 686–693.Google Scholar
  6. 6.
    Along the Bond Line Groundbreaking Aircraft Structures, Papendrecht: Fokker Technol., 2013.Google Scholar
  7. 7.
    Van Veggel, L.H., Jongebreur, A.A., and Gunnink, J.W., Damage tolerance aspects of an experimental ARALL F-27 lower wing skin panel, Proc. 14th Symp. of the International Committee on Aeronautical Fatigue, June 8–12, 1987, Ottawa, 1987, pp. 465–502.Google Scholar
  8. 8.
    Vlot, A., Glare: History of the Development of a New Aircraft Material, Dordrecht: Kluwer, 2002.Google Scholar
  9. 9.
    Liu, Y. and Liaw, B., Effects of constituents and lay-up configuration on drop-weight tests of fiber–metal laminates, Appl. Comp. Mater., 2010, vol. 17, pp. 43–62.CrossRefGoogle Scholar
  10. 10.
    Cortes, P. and Cantwell, W.J., Fracture properties of a fiber-metal laminates based on magnesium alloy, J. Mater. Sci., 2010, vol. 39, pp. 1081–1083.CrossRefGoogle Scholar
  11. 11.
    Cortes, P. and Cantwell, W.J., The fracture properties of a fiber-metal laminate based on magnesium alloy, Composites, Part B, 2006, vol. 37, pp. 163–170.CrossRefGoogle Scholar
  12. 12.
    McKown, S., Cantwell, W.J., and Jones, N., Investigation of scaling effects in fiber-metal laminates, J. Composites Mater., 2008, vol. 42, no. 9, pp. 865–888.CrossRefGoogle Scholar
  13. 13.
    Vermeeren, C., Around Glare. A New Aircraft Material in Context, Dordrecht: Kluwer, 2004.Google Scholar
  14. 14.
    Hagenbeek, M., Characterization of Fiber-Metal Laminates under Thermo-Mechanical Loadings, Delft: Delft Univ. Technol., 2005.Google Scholar
  15. 15.
    Yang, J.M., Damage Tolerance and Durability of Fiber-Metal Laminates for Aircraft Structures, Los Angeles: Univ. of Calif., 2009, pp. 1–25; pp. 1–55.Google Scholar
  16. 16.
    Wu, G.C. and Yang, J.M., The mechanical behavior of GLARE laminates for aircraft structures, JOM, 2005, vol. 57, pp. 72–79.CrossRefGoogle Scholar
  17. 17.
    Schmidt, H.-J., Modern materials and industrial technologies for aviation, Mater. 2-oi konf. po svoistvam materialov i komponentov pod peremennoi amplitudnoi nagruzke (Proc. 2nd Conf. on the Properties of Materials and Components Affected by Variable Amplitude Loading), Buxtehude, 2009.Google Scholar
  18. 18.
    Heinimann, M., Kulak, M., Bucci, R., James, M., Wilson, G., Brockenbrough, J., Zonker, H., and Sklyut, H., Validation of advanced metallic hybrid concept with improved damage tolerance capabilities for next generation lower wing and fuselage applications, Proc. 24th ICAF Symposium, May 16–18, 2007, Naples, Italy, ICAF No. 2417, Lazzeri, L. and Salvetti, A., Eds., Naples, 2007, p. 27.Google Scholar
  19. 19.
    Kablov, E.N., Antipov, V.V., and Senatorova, O.G., Lamellar aluminum-glass plastics Sial-1441 and cooperation with Airbus and TU Delft, Tsvetn. Met., 2013, no. 9 (849), pp. 50–53.Google Scholar
  20. 20.
    Startsev, O.V., Krotov, A.S., Senatorova, O.G., Anikhovskaya, L.I., Antipov, V.V., and Grashchenkov, D.V., Sorption and diffusion of moisture in lamellar metalpolymer SIAL-type composite materials, Materialovedenie, 2011, no. 12, pp. 38–44.Google Scholar
  21. 21.
    Kablov, E.N., Antipov, V.V., Senatorova, O.G., and Lukina, N.F., New lamellar aluminum-glass plastics based on aluminum-lithium alloy 1441 with low density, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2011, suppl. 2, pp. 174–183.Google Scholar
  22. 22.
    Antipov, V.V., Senatorova, O.G., Sidel’nikov, V.V., and Shestakov, V.V., Construction lamellar SIAL materials, Klei, Germetiki, Tekhnol., 2012, no. 6, pp. 13–17.Google Scholar
  23. 23.
    Serebrennikova, N.Yu., Antipov, V.V., Senatorova, O.G., Erasov, V.S., and Kashirin, V.V., Hybrid lamellar wing materials based on aluminum-lithium alloy, Aviats. Mater. Tekhnol., 2016, no. 3, pp. 3–8.Google Scholar
  24. 24.
    Klochkova, Yu.Yu., Klochkov, G.G., Romanenko, V.A., and Popov, V.I., Structure and properties of sheets made of high-strength aluminum-lithium alloy, Aviats. Mater. Tekhnol., 2015, no. 4, pp. 3–8.Google Scholar
  25. 25.
    Antipov, V.V., Kolobnev, N.I., and Khokhlatova, L.B., Development of aluminum-lithium alloys and multistage heat treatment regimes, Aviats. Mater. Tekhnol., 2012, suppl., pp. 183–195.Google Scholar
  26. 26.
    Oreshko, E.I., Erasov, V.S., Podzhivotov, N.Yu., and Lutsenko, A.N., Strength analysis of hybrid wing panel based on high-strength aluminum-lithium alloy and lamellar fiberglass, Aviats. Mater. Tekhnol., 2016, no. 1 (40), pp. 53–61.Google Scholar
  27. 27.
    Oreshko, E.I., Erasov, V.S., and Podzhivotov, N.Yu., Selection of location scheme of high modulus circuit layers in a multilayer hybrid plate to prevent stability loss, Aviats. Mater. Tekhnol., 2014, suppl. 4, pp. 109–117.Google Scholar
  28. 28.
    Kablov, E.N., Erasov, V.S., Podzhivotov, N.Yu., Grinevich, A.V., and Mitrakov, O.V., RF Patent 157415, 2015.Google Scholar
  29. 29.
    Erasov, V.S., Grinevich, A.V., Senik, V.Ya., Konovalov, V.V., Trunin, Yu.P., and Nesterenko, G.I., Estimated strength of aviation materials, Aviats. Mater. Tekhnol., 2012, no. 2, pp. 14–16.Google Scholar
  30. 30.
    Erasov, V.S., Yakovlev, N.O., and Nuzhnyi, G.A., Qualification testing and strength analysis of aviation materials, Aviats. Mater. Tekhnol., 2012, suppl., pp. 440–448.Google Scholar
  31. 31.
    Erasov, V.S. and Nuzhnyi, G.A., Hard loading cycle at fatigue tests, Aviats. Mater. Tekhnol., 2011, no. 4, pp. 35–40.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. Yu. Podzhivotov
    • 1
  • E. N. Kablov
    • 1
  • V. V. Antipov
    • 1
  • V. S. Erasov
    • 1
  • N. Yu. Serebrennikova
    • 1
  • M. R. Abdullin
    • 2
  • M. V. Limonin
    • 3
  1. 1.All-Russian Scientific Research Institute of Aviation MaterialsMoscowRussia
  2. 2.JSC TupolevMoscowRussia
  3. 3.Central Aerohydrodynamic InstituteZhukovsky, Moscow oblastRussia

Personalised recommendations