Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 245–253 | Cite as

Obtaining and electrical properties of ceramics based on mixed niobium and tantalum pentoxide Nb2(1–y)Ta2y O5

  • M. N. Palatnikov
  • V. V. Efremov
  • N. V. Sidorov
Materials for Electronics Technology
  • 26 Downloads

Abstract

A method is developed for the preparation of mixed pentoxide Nb2(1–y)Ta2y O5 by rapid coprecipitation of a mixture of hydroxides of niobium and tantalum from a solution of hydrofluoric acid by ammonia water, followed by purification and calcination of the precipitate. The proposed method allows obtaining a homogeneously mixed pentoxide of niobium and tantalum Nb2(1–y)Ta2y O5, in contrast to the method of obtaining Nb2(1–y)Ta2y O5 from a mechanical mixture of individual pentoxides of niobium and tantalum. The temperature dependences of the real part of the permittivity (ε′) of ceramic samples of Nb2(1–y)Ta2y O5 at various frequencies were investigated and the magnitude of dielectric loss (tan(δ)) versus frequency measurement of the electric field and temperature was evaluated. On the basis of analysis of the data of impedance spectroscopy, the temperature dependence of the static conductivity σ of the ceramic Nb2(1–y)Ta2y O5 was determined. From the temperature dependence of σ , the enthalpies of activation of charge transport for different temperature ranges were evaluated.

Keywords

dielectric solid solutions pentoxide of niobium and tantalum impedance spectroscopy permittivity dielectric loss tangent conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cava, R.J., Peck, W.F., and Krajewski, J.J., Enhancement of the dielectric constant of Ta2O5 through substitution with TiO2, Nature, 1995, vol. 377, pp. 215–217.CrossRefGoogle Scholar
  2. 2.
    Gang, J.-Y., Chang, Y.C., and Wu, T.B., Dielectric property of (TiO2)x–(Ta2O5)1–x thin films, Appl. Phys. Lett., 1998, vol. 72, no. 3, pp. 332–334.CrossRefGoogle Scholar
  3. 3.
    Cava, R.J., Peck, W.F., Krajewski, J.J., Robert, G.L., Barber, B.P., O’Bryan, H.M., and Gammel, P.L., Improvement of the dielectric properties of Ta2O5 through substitution with Al2O3, Appl. Phys. Lett., 1997, vol. 70, no. 11, pp. 1396–1398.CrossRefGoogle Scholar
  4. 4.
    Guo, R., Jiang, Y.J., and Bhalla, A.S., Processing and annealing conditions on the dielectric properties of (Ta2O5)0.92(TiO2)0.08 ceramics, Mater. Lett., 2002, vol. 57, no. 2, pp. 270–274.CrossRefGoogle Scholar
  5. 5.
    Zaininger, K.H. and Wang, C.C., Thin film dielectric materials for microelectronics, Proc. IEEE, 1969, vol. 57, no. 9, pp. 1564–1570.CrossRefGoogle Scholar
  6. 6.
    Marucco, J.F., Thermodynamic study of the system NbO2–Nb2O5 at high temperature, J. Solid State Chem., 1974, vol. 10, no. 3, pp. 211–218.CrossRefGoogle Scholar
  7. 7.
    Gatahouse, B.M. and Wadslay, A.D., The crystal structure of the high temperature form of niobium pentoxide, Acta Crystallogr., 1964, vol. 17, pp. 1545–1554.CrossRefGoogle Scholar
  8. 8.
    Greener, E.H., Whitmore, D.H., and Fine, M.E., Electrical conductivity of near-stoichiometric α-Nb2O5, J. Chem. Phys., 1961, vol. 34, no. 3, pp. 1017–1023.CrossRefGoogle Scholar
  9. 9.
    Greener, E.H. and Hirthe, W.M., Electrical conductivity of nonstoichiometric α-Nb2O5, J. Electrochem. Soc., 1962, vol. 109, no. 7, pp. 600–603.CrossRefGoogle Scholar
  10. 10.
    Balachandran, U. and Eror, N.G., Non-stoichiometric disorder in α-Nb2O5 at elevated temperatures, J. Mater. Sci., 1982, vol. 17, no. 5, pp. 1286–1296.CrossRefGoogle Scholar
  11. 11.
    Balachandran, U. and Eror, N.G., On the defect structure of acceptor-doped α-Nb2O5, J. Less-Common Met., 1982, vol. 84, pp. 215–223.CrossRefGoogle Scholar
  12. 12.
    Marucco, J.F., Electrical resistance and defect structure of stable and metastable phases of the system Nb12O29–Nb2O5 between 800 and 1100°C, J. Chem. Phys., 1979, vol. 70, no. 2, pp. 649–654.CrossRefGoogle Scholar
  13. 13.
    Janninck, R.F. and Whitmore, D.H., Electrical conduction in nonstoichiometric α-Nb2O5, J. Chem. Phys., 1962, vol. 37, no. 12, pp. 2750–2754.CrossRefGoogle Scholar
  14. 14.
    Palatnikov, M.N., Efremov, V.V., Sidorov, N.V., Shcherbina, O.B., Yanichev, A.A., and Efremov, I.N., Effect of ceramic powder particle size on the electrical properties of Li0.03Na0.97Ta0.05Nb0.95O3 ceramics, Inorg. Mater., 2013, vol. 49, no. 2, pp. 185–193.CrossRefGoogle Scholar
  15. 15.
    Palatnikov, M.N., Sandler, V.A., Efremov, V.V., Sidorov, N.V., and Kalinnikov, V.T., Dielectric properties and conductivity of segnetoelectric solid solutions Li0.07Na0.93Ta0.1Nb0.9O3 and Li0.07Na0.93Ta0.111Nb0.889O3, Neorg. Mater., 2011, vol. 47, no. 11, pp. 1361–1367.Google Scholar
  16. 16.
    Palatnikov, M.N., Sidorov, N.V., and Kalinnikov, V.T., Segnetoelektricheskie tverdye rastvory na osnove oksidnykh soedinenii niobiya i tantala: sintez, issledovanie strukturnogo uporyadocheniya i fizicheskikh kharakteristik (Segnetoelectric Solid Solutions Based on Niobium and Tantalum Oxides: Synthesis, Study of Structure Order, and Physical Properties), St. Petersburg: Nauka, 2002.Google Scholar
  17. 17.
    Baram, I.I., Kinetics of niobium and tantalum pentoxide dissolving in hydrofluoric acid, Zh. Prikl. Khim., 1965, vol. 38, no. 10, pp. 2181–2188.Google Scholar
  18. 18.
    Baram, I.I., Effect of sulfuric and hydrofluoric acids mixture on niobium and tantalum pentoxide dissolving, Izv. Vyssh. Uchebn. Zaved., Metall., 1969, no. 4, pp. 78–82.Google Scholar
  19. 19.
    Fairbrother, F., The Chemistry of Niobium and Tantalum, Amsterdam: Elsevier, 1967.Google Scholar
  20. 20.
    Babkin, A.G., Duboshin, G.N., Maiorov, V.G., Mikhailova, M.L., and Balabanov, Yu.I., Analysis of purification and composition change of niobium hydroxide under heating, in Fizikokhimicheskoe issledovanie soedinenii i splavov redkikh elementov (Physical- Chemical Analysis of Rare Element Compounds and Alloys), Kadyrova, G.I., Ed., Apatity: Akad. Nauk SSSR, 1978, pp. 93–98.Google Scholar
  21. 21.
    Popova, R.A., Duboshin, G.N., Balabanov, Yu.I., and Bykova, A.N., Analysis of purification and composition change of tantalum hydroxide under heating, in Issledovaniya po fiziko-khimicheskim osnovam tekhnologii pererabotki mineral’nogo syr’ya (Analysis of Physical and Chemical Basis of Processing Technology of the Raw Minerals), Leningrad: Nauka, 1983, pp. 95–99.Google Scholar
  22. 22.
    Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Application, New York: Wiley, 2005.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. N. Palatnikov
    • 1
  • V. V. Efremov
    • 1
  • N. V. Sidorov
    • 1
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science CenterRussian Academy of SciencesApatity, Murmansk oblastRussia

Personalised recommendations