Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 195–202 | Cite as

Pulsed laser deposition and characterization of nanostructured thin films based on Mo(Ni)Se x and amorphous carbon phase as electrocatalysts for hydrogen evolution reaction

  • V. N. Nevolin
  • S. N. Grigoriev
  • R. I. Romanov
  • D. V. Fominski
  • M. A. Volosova
  • A. A. Soloviev
  • A. A. Burmistrov
Physicochemical Principles of Design of Materials and Technologies


Thin films of Mo(Ni)Se x are synthesized using pulsed laser deposition (PLD) in a special mode of operation in which the laser ablation of a Mo(Ni)Se2 target releases a mixed deposition flux consisting of atomic Mo, Ni, and Se and Mo droplets. The size of deposited Mo particles is in the range of 20–100 nm. Incorporation of amorphous carbon phase (a-C) in some Mo(Ni)Se x films is achieved by using a graphite target along with a Mo(Ni)Se2 one and depositing the ablation plume of the former. The films are deposited on graphite and glassy carbon substrates and some are subjected to thermal treatment at 550°C. Electrochemical testing for catalytic activity toward hydrogen evolution reaction (HER) and characterization of the structures are performed for both thermally processed and unprocessed samples. Annealing is shown to cause the formation of structures with the inclusion of ultrafine sheetlike MoSe2 crystals. Incorporation of carbon in the films suppresses the growth of the nanosheets during annealing. However, enhancement of HER in an acidic solution is also observed for samples with quite minor amounts of the nanosheets, which can be attributed to peculiarities of structurization of Mo(Ni)Se x and Mo(Ni)Se x /a-C layers obtained by PLD.


layered nanostructure hydrogen evolution reaction pulsed laser deposition catalysts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, Q., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 2012, vol. 7, pp. 699–712.CrossRefGoogle Scholar
  2. 2.
    Eda, G. and Maier, S.A., Two-dimensional crystals: Managing light for optoelectronics, ACS Nano, 2013, vol. 7, pp. 5660–5665.CrossRefGoogle Scholar
  3. 3.
    Chia, X., Eng, A.Y.S., Ambrosia, A., Tan, S.M., and Pumera, M., Electrochemistry of nanostructured layered transition metal dichalcogenides, Chem. Rev., 2015, vol. 115, pp. 11941–11966.CrossRefGoogle Scholar
  4. 4.
    Jaramillo, T.F., Jorgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., and Chorkendorff, I., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science, 2007, vol. 317, pp. 100–102.CrossRefGoogle Scholar
  5. 5.
    Le, D., Rawal, T.B., and Rahman, T.S., Single-layer MoS2 with sulfur vacancies: Structure and catalytic application, J. Phys. Chem. C, 2014, vol. 118, pp. 5346–5351.CrossRefGoogle Scholar
  6. 6.
    Zou, X. and Zhang, Yu., Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 2015, vol. 44, pp. 5148–5180.CrossRefGoogle Scholar
  7. 7.
    Gao, M., Xu, Y., Jiang, J., and Yu, Sh., Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices, Chem. Soc. Rev., 2013, vol. 42, pp. 2986–3017.CrossRefGoogle Scholar
  8. 8.
    Ting, L.R.L., Deng, Y., Ma, L., Zhang, Y.-J., Peterson, A.A., and Yeo, B.S., Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction, ACS Catal., 2016, vol. 6, pp. 861–867.CrossRefGoogle Scholar
  9. 9.
    Le, D., Rawal, T.B., and Rahman, T.S., Single-layer MoS2 with sulfur vacancies: Structure and catalytic application, J. Phys. Chem. C, 2014, vol. 118, pp. 5346–5351.CrossRefGoogle Scholar
  10. 10.
    Grigoriev, S.N., Fominski, V.Yu., Nevolin, V.N., Romanov, R.I., Volosova, M.A., and Irzhak, A.V., Formation of thin catalytic WSex layer on graphite electrodes for activation of hydrogen evolution reaction in aqueous acid, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 2, pp. 285–291.CrossRefGoogle Scholar
  11. 11.
    Grigoriev, S.N., Fominski, V.Yu., Romanov, R.I., Volosova, M.A., and Shelyakov, A.V., Pulsed laser deposition of nanocomposites MoSex/Mo thin-film catalyst for hydrogen evolution reaction, Thin Solid Films, 2015, vol. 592, pp. 175–181.CrossRefGoogle Scholar
  12. 12.
    Kukunuri, S., Krishnan, M.R., and Sampath, S., The effect of structural dimensionality on the electrocatalytic properties of the nickel selenide phase, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 23448–23459.CrossRefGoogle Scholar
  13. 13.
    Streckova, M., Mudra, E., Orinakova, R., Markusova-Buckova, L., Sebek, M., Kovalcikova, A., Sopcak, T., Girman, V., Dankova, Z., Micusik, M., and Dusza, J., Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favorable electrocatalysts for hydrogen evolution, Chem. Eng. J., 2016, vol. 303, pp. 167–181.CrossRefGoogle Scholar
  14. 14.
    Chen, W.-F., Wang, C.-H., Sasaki, K., Marinkovic, N., Xu, W., Muckerman, J.T., Zhub, Y., and Adzic, R.R., Highly active and durable nanostructured molybdenumcarbide electrocatalysts for hydrogen production, Energy Environ. Sci., 2013, vol. 6, pp. 943–951.CrossRefGoogle Scholar
  15. 15.
    Han, J., Ouyang, L., Zhuang, D., Liao, C., Liu, J., Zhao, M., Cha, L., and Besland, M.-P., Raman and XPS studies of CIGS/Mo interfaces under various annealing temperatures, Mater. Lett., 2014, vol. 136, pp. 278–281.CrossRefGoogle Scholar
  16. 16.
    Ferrari, A.C. and Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 1999, 61, no. 20, pp. 14095–14107.CrossRefGoogle Scholar
  17. 17.
    Bi, E., Chen, H., Yang, X., Ye, F., Yin, M., and Han, L., Fullerene-structured MoSe2 hollow spheres anchored on highly nitrogen-doped graphene as a conductive catalyst for photovoltaic applications, Sci. Rep., 2015, vol. 5, p. 13214.CrossRefGoogle Scholar
  18. 18.
    Lee, S., Benck, J.D., Tsai, C., Park, J., Koh, A.L., Abild-Pedersen, F., Jaramillo, T.F., and Sinclair, R., Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production, ACS Nano, 2016, vol. 10, pp. 624–632.CrossRefGoogle Scholar
  19. 19.
    Casalongue, H.G.S., Benck, J.D., Tsai, C., Karlsson, R.K.B., Kaya, S., Ng, M.L., Pettersson, L.G.M., Abild-Pedersen, F., Nørskov, J.K., Ogasawara, H., Jaramillo, T.F., and Nilsson, A., Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction, J. Phys. Chem. C, 2014, vol. 118, pp. 29252–29259.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. N. Nevolin
    • 1
  • S. N. Grigoriev
    • 2
  • R. I. Romanov
    • 3
  • D. V. Fominski
    • 3
  • M. A. Volosova
    • 2
  • A. A. Soloviev
    • 3
  • A. A. Burmistrov
    • 4
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State University of Technology STANKINMoscowRussia
  3. 3.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  4. 4.National Research University MPEIMoscowRussia

Personalised recommendations