Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 318–326 | Cite as

Kinetic analysis of the oxidation of Nb–Si eutectic alloy doped with boron

  • A. N. Mansurova
  • R. I. Gulyaeva
  • V. M. Chumarev
General Purpose Materials


The mechanism and the kinetics of the oxidation in an air flow of powdery Nb–Si eutectic alloy containing (wt %) 93.0 Nb, 6.7 Si, and 0.27 B are studied by X-ray diffraction (XRD), thermogravimetric (TG), and differential thermal analysis (DTA). The oxidation of alloy proceeds through three stages. At the first stage (600–923 K), the oxidation of a Nb ss solid solution (with the formation of Nb2O5, NbO0.76, NbO, and NbO2 oxides) and boron (to B2O3) released during the conversion of the Nb5Si3–x B x phase (T2 phase) into Nb5SiB y (D88) occurs. At the second stage (923–993 K), the accumulation of the product layer and the formation of borosilicate occur, which prevents the oxidation. At the third stage, Nb3Si and Nb5SiB y (D88) silicides and Nb3B2 niobium boride are oxidized. Under heating above 1023 K, the interaction of boron oxide with niobium oxide occurs with the formation of Nb3BO9. The possible oxidation mechanisms are considered. It is shown that are well described by the model of three successive stages, each one limited by the kinetic regime.


composites niobium silicon boron oxidation kinetics mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bewlay, B.P., Jackson, M.R., Zhao, J.C., and Subramanian, P.R., A review of very-high-temperature Nb–silicide-based composites, Metall. and Mater. Trans., A, 2003, vol. 34, pp. 2043–2052.CrossRefGoogle Scholar
  2. 2.
    Grashchenkov, D.V., Shchetanov, B.V., and Efimochkin, I.Yu., Development of powder metallurgy of refractory materials, Vse Mater., 2011, no. 5. Scholar
  3. 3.
    Kocherzhinskii, Yu.A., Yupko, L.M., and Shishkin, E.A., Equilibrium diagram of the Nb–Si system, Metally (Moscow), 1980, no. 1, pp. 206–210.Google Scholar
  4. 4.
    Schlesinger, M.E., Okamoto, H., Gokahle, A.B., and Abbaschian, R., The Nb–Si (niobium-silicon) system, J. Phase Equilib., 1993, vol. 14, no. 4, pp. 502–509.CrossRefGoogle Scholar
  5. 5.
    Chumarev, V.M., Leont’ev, L.I., Udoeva, L.Yu., Sel’menskikh, N.I., Gulyaeva, R.I., Zhidovinova, S.V., and Larionov, A.V., Effect of boron and yttrium on the phase composition and the microstructure of natural Nb–Si composites, Russ. Metall., (Engl. Transl.), 2014, vol. 2014, no. 9, pp. 688–696.CrossRefGoogle Scholar
  6. 6.
    Svetlov, I.L., High-temperature Nb–Si composites. Part 1, Inorg. Mater.: Appl. Res., 2011, no. 2, pp. 307–315CrossRefGoogle Scholar
  7. 7.
    Svetlov, I.L., High-temperature Nb–Si composites. Part 2, Inorg. Mater.: Appl. Res., 2011, no. 2, p. 316.CrossRefGoogle Scholar
  8. 8.
    Zelenitsas, K. and Tsakiropoulos, P., Effect of Al,Cr,and Ta additions on the oxidation behavior of Nb–Ti–Si in situ composites at 800°C, Mater. Sci. Eng., A, 2006, vol. 416, pp. 269–280.CrossRefGoogle Scholar
  9. 9.
    Wang, J., Guo, X.P., and Guo, J.M., Effects of B on the microstructure and oxidation resistance of Nb–Ti–Sibased ultrahigh-temperature alloy, Chin. J. Aeronaut., 2009, vol. 22, pp. 544–550.CrossRefGoogle Scholar
  10. 10.
    Geng, J. and Tsakiropoulos, P., A study of the microstructures and oxidation of Nb–Si–Cr–Al–Mo in situ composites alloyed with Ti, Hf, Sn, Intermetallics, 2007, vol. 15, pp. 382–395.CrossRefGoogle Scholar
  11. 11.
    Gulyaeva, R.I., Mansurova, A.N., Chumarev, V.M., Leont’ev, L.I., and Udoeva, L.Yu., Kineticheskii analiz okisleniya evtekticheskogo splava Nb–Si (Kinetic Analysis of the Oxidation of the Eutectic Nb–Si Alloy), Tr. Inst. Metall., Ural. Otd., Ross. Akad. Nauk, Chelyabinsk: Yuzh.-Ural. Knizh. Izd., 2015, pp. 83–91.Google Scholar
  12. 12.
    Liu, A.Q., Li, S.S., Sun, L., and Han, Y.F., Effect of B on the microstructures and high temperature oxidation resistance of a Nb–Si system in-situ composite, Mater. Sci. Forum, 2007, vols. 546–549, pp. 1489–1494.CrossRefGoogle Scholar
  13. 13.
    Perepezko, J.H., Phase Stability and Microstructure Design in High Temperature (Mo,Nb)–Si–B Alloys, Madison: Univ. of Wisconsin–Madison, 1999.Google Scholar
  14. 14.
    Liu, Y., Thom, A.J., Kramer, M.J., and Akinc, M., Processing and Oxidation Behavior of Nb–Si–B Intermetallics, Ames: Iowa State Univ, 2004. Scholar
  15. 15.
    Sun, Z., Yang, Y., Guo, X., Zhang, C., and Chang, Y.A., Thermodynamic modeling of the Nb-rich corner in the Nb–Si–B system, Intermetallics, 2011, vol. 19, pp. 26–34.CrossRefGoogle Scholar
  16. 16.
    Katrych, S., Grytsiv, A., Bondar, A., Rogl, P., Velikanova, T., and Bohn, M., Structural materials: metal–silicon–Boron. The Nb-rich corner of the Nb–Si–B system, J. Solid State Chem., 2004, vol. 177, pp. 493–497.CrossRefGoogle Scholar
  17. 17.
    Joubert, J.-M., Colinet, C., Rodrigues, G., Suzuki, P.A., Nunes, C.A., Coelho, G.C., and Tedenac, J.-C., The T2 phase in the Nb–Si–B system studied by abinitio calculations and synchrotron X-ray diffraction, J. Solid State Chem., 2012, vol. 190, pp. 111–117.CrossRefGoogle Scholar
  18. 18.
    Cheng, J., Yi, S., and Sik Park, J., Oxidation behavior of Nb–Si–B alloys with the NbSi2 coating layer formed by a pack cementation technique, Int. J. Refract. Met. Hard Mater., 2013, vol. 41, pp. 103–109.CrossRefGoogle Scholar
  19. 19.
    Ukegawa, M., Yamauchi, A., Kobayashi, A., and Kurokawa, K., Interfacial reaction sin Nb/NbSi2 and Nb/NbSi2–B systems, Vacuum, 2009, vol. 83, pp. 157–160.CrossRefGoogle Scholar
  20. 20.
    Cheng, J., Yi, S., and Sik Park, J., Simultaneous coating of Si and B on Nb–Si–B alloys by a halide activated pack cementation method and oxidation behaviors of the alloys with coating sat 1100°C, J. Alloys Compd., 2015, vol. 644, pp. 975–981.CrossRefGoogle Scholar
  21. 21.
    Zhang, F., Zhang, L.T., Shan, A.D., and Wu, J.S., Microstructural effect on oxidation kinetics of NbSi2 at 1023 K, J. Alloys Compd., 2006, vol. 422, pp. 308–312.CrossRefGoogle Scholar
  22. 22.
    Sun, Z., Yang, Y., Guo, X., Zhang, C., and Chang, Y.A., Thermodynamic modeling of the Nb-rich corner in the Nb–Si–B system, Intermetallics, 2011, vol. 19, pp. 26–34.CrossRefGoogle Scholar
  23. 23.
    Junior, D.M.P., Nunes, C.A., Coelho, G.C., and Ferreira, F.V., Liquidus projection of the Nb–Si–B system in the Nbrich region, Intermetallics, 2003, vol. 11, pp. 251–255.CrossRefGoogle Scholar
  24. 24.
    Kurokawa, K., Yamauchi, A., and Matsushita, S., Improvement of oxidation resistance of NbSi2 by addition of boron, Mater. Sci. Forum, 2005, vol. 502, pp. 243–248.CrossRefGoogle Scholar
  25. 25.
    Murakami, T., Xu, C.N., Kitahara, A., Kawahara, M., Takahashi, Y., Inuy, H., and Yamaguchi, M., Microstructure,mechanical properties and oxidation behavior of power compacts of the Nb–Si–B system prepared by spark plasma sintering, Intermetallics, 1999, vol. 7, pp. 1043–1048.CrossRefGoogle Scholar
  26. 26.
    Behrani, V., Thom, A.J., Kramer, M.J., and Akinc, M., Microstructure and oxidation behavior of Nb–Mo–Si–B alloys, Intermetallics, 2006, vol. 14, pp. 24–32.CrossRefGoogle Scholar
  27. 27.
    Proc. 20th Annual Conf. on Composites, Advanced Ceramics, Materials, and Structures, A: Ceramic Engineering and Science Proceedings, Wachtman, J.B., Eds., New York: Wiley, 2008, vol. 17, no. 3, p. 131.Google Scholar
  28. 28.
    Upolovnikova, A.G., Zhidovinova, S.V., and Larionov, A.V., Oxidation of eutectic Nb–Si alloys doped with boron, Privolzhsk. Nauch. Vestn., 2015, no. 10, pp. 33–36.Google Scholar
  29. 29.
    International Centre for Diffraction Data–ICDD, 2013. Scholar
  30. 30.
    Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 2011, vol. 520, pp. 1–19.CrossRefGoogle Scholar
  31. 31.
    Brown, M.E., Dollimore, D., and Galway, A.K., Reaction in the solid state, in Comprehensive Chemical Kinetics, Bamford, C.H. and Tipper, C.F.H., Eds., Amsterdam: Elsevier, 1980, pp. 87–91.Google Scholar
  32. 32.
    Kofstad, P., High-Temperature Oxidation of Metals, New York: Wiley, 1966.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. N. Mansurova
    • 1
  • R. I. Gulyaeva
    • 1
  • V. M. Chumarev
    • 1
  1. 1.Institute of Metallurgy, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations