Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 305–312 | Cite as

Adhesive properties of carbon 1D nanostructures in elastomeric composition

  • I. A. Mansurova
  • O. Yu. Isupova
  • E. A. Durnev
  • K. E. Gavrilov
  • A. A. Burkov
General Purpose Materials
  • 17 Downloads

Abstract

The paper describes the investigation of the effect of functionalized carbon 1D nanostructures (single- or multiwalled nanotubes, nanofibers with a relatively smooth or highly disordered outer surface) on the level of interfacial interactions in filled vulcanizates. It is found that functionalization of nanoparticles with carbon black is accompanied by formation of hybrid structures in phase of filler that leads to increasing vulcanizate stiffness. Functionalization of nanoparticles by polyfunctional polymers increases the level of interfacial interactions on the vulcanizate-textile cord border without deterioration of the complex of elastic-strength properties.

Keywords

carbon nanotubes carbon nanofibers vulcanizate-cord bond strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novakov, I.A., Kablov, V.F., and Petryuk, I.P., Mikro i nanostruktura i svoistva elastomernykh materialov (Micro- and Nanostructure, and Properties of Elastomeric Materials), Volgograd: Volgograd. Gos. Tekh. Univ., 2012.Google Scholar
  2. 2.
    Koshelev, F.F., Kornev, A.E., and Bukanov, A.M., Obshchaya tekhnologiya reziny (General Technology of Rubber Production), Moscow: Khimiya, 1978.Google Scholar
  3. 3.
    Sabu, T. and Ranimol, S., Rubber Nanocomposites: Preparation, Properties, and Applications, Singapore: Wiley, 2010. http://onlinelibrary.wiley.com/book/10.1002/9780470823477. doi 10.1002/9780470823477Google Scholar
  4. 4.
    Ershov, D.V., Red’kin, V.E., and Ivanenko, A.A., Production and study of properties of elastomers modified by ultradispersed (nano) particles, Kauchuk Rezina, 2011, no. 4, pp. 19–22.Google Scholar
  5. 5.
    Davydova, M.L., Sokolova, M.D., Haldeeva, A.R., and Djakonov, A.A., Modification of sealing rubber based on nitrile butadiene rubber by thermoexpanded graphite, J. Frict. Wear, 2015, vol. 36, no. 1, pp. 23–28. doi 10.3103/S1068366615010031CrossRefGoogle Scholar
  6. 6.
    Mishakov, I.V., Strel’tsov, I.A., Bauman, Yu.I., Vedyagin, A.A., and Buyanov, R.A., Carbon nanofibers with highly-developed surface area: specific synthesis and morphology, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, no. 7, pp. 107–110.Google Scholar
  7. 7.
    O’Connell, M.J., Boul, P., Ericson, L.M., Huffman, C., Wang, Y., Haroz, E., Kuper, C., Tour, J., Ausman, K.D., and Smalley, R.E., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 2001, vol. 342, nos. 3–4, pp. 265–271. http://www.sciencedirect.com/science/article/pii/S0009261401004900. doi 10.1016/S0009-2614(01)00490-0CrossRefGoogle Scholar
  8. 8.
    Huang, Y.Y. and Terentjev, E.M., Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties, Polymers, 2012, vol. 4, no. 1, pp. 275–295. http://www.mdpi.com/2073-4360/4/1/275. doi 10.3390/polym4010275Google Scholar
  9. 9.
    Monthioux, M., Smith, B.W., Burteaux, B., Claye, A., Fischer, J.E., and Luzzi, D.E., Sensitivity of singlewall carbon nanotubes to chemical processing: an electron microscopy investigation, Carbon, 2001, vol. 39, no. 8, pp. 1251–1272. http://www.sciencedirect.com/science/article/pii/S0008622300002499. doi 10.1016/S0008-6223(00)00249-9CrossRefGoogle Scholar
  10. 10.
    Durnev, E.A., Gavrilov, K.E., Chernyad’ev, A.V., Burkov, A.A., and Mansurova, I.A., Analysis of morphology of carbon nanomaterials by electron microscopy, Vseross. ezhegodnaya nauchno-prakt. konf. “Obshchestvo, nauka, innovatsii,” Kirov, 15–26 aprelya 2015 g. (All- Russ. Annual Sci.-Pract. Conf. “Society, Science, and Innovations,” Kirov, April 15–26, 2015), Kirov: Vyatsk. Gos. Univ., 2015, pp. 301–305.Google Scholar
  11. 11.
    Orlov, V.Yu., Komarov, A.M., and Lyapina, L.A., Proizvodstvo i ispol’zovanie tekhnicheskogo ugleroda dlya rezin (Production and Use of Carbon Black for Rubbers), Yaroslavl: Izd. A. Rutmana, 2002.Google Scholar
  12. 12.
    Volkova, A.A., Gruzdeva, V.V., Kraeva, E.Yu., Ovchinnikova, V.S., Burkov, A.A., and Mansurova, I.A., Directed functionalization of the carbon nanomaterial samples obtained by CVD synthesis, Vseross. ezhegodnaya nauchno-prakt. konf. “Obshchestvo, nauka, innovatsii,” Kirov, 15–26 aprelya 2015 g. (All-Russ. Annual Sci.-Pract. Conf. “Society, Science, and Innovations,” Kirov, April 15–26, 2015), Kirov: Vyatsk. Gos. Univ., 2015, pp. 306–310.Google Scholar
  13. 13.
    Reinforcement of Elastomers, Kraus, G., Ed., New York: Interscience, 1965.Google Scholar
  14. 14.
    Tugov, I.I. and Kostrykina, G.I., Khimiya i fizika polimerov (Chemistry and Physics of Polymers), Moscow: Khimiya, 1989.Google Scholar
  15. 15.
    Bhattacharyya, S., Sinturel, C., Bahloul, O., Saboungi, M-L., Thomas, S., and Salvetat, J.-P., Improving reinforcement of natural rubber by networking of activated carbon nanotubes, Carbon, 2008, vol. 46, no. 7, pp. 1037–1045. http://www.sciencedirect.com/science/article/pii/S0008622308001474.10.1016/j.carbon.2008.03.011CrossRefGoogle Scholar
  16. 16.
    Shashok, Zh.S. and Prokopchuk, N.R., Primenenie uglerodnykh nanomaterialov v polimernykh kompozitsiyakh (Implementation of Carbon Nanomaterials in Polymer Composites), Minsk: Bel. Gos. Tekh. Univ., 2014.Google Scholar
  17. 17.
    Shmurak, I.L., Tekhnologiya krepleniya shinnogo korda k rezine (Technology of Fixation of the Tire Cord to Rubber), Moscow: Khimiya, 1993.Google Scholar
  18. 18.
    Khmelev, V.N., Slivin, A.N., Barsukov, R.V., Tsyganok, S.N., and Shalunov, A.V., Application of ultrasound to accelerate processes in liquid media, in Primenenie ul’trazvuka v promyshlennosti (Industrial Application of Ultrasound), Barnaul: Altai. Gos. Tekh. Univ. im. I.I. Polzunova,2010. http://u-sonic.ru/book/export/html/912.Google Scholar
  19. 19.
    Gavrilova, A.S., Degradation of biopolymers by ultrasound, Vestn. Tversk. Gos. Tekh. Univ., 2014, no. 1 (25), pp. 73–76. http://eprints.tstu.tver.ru/225/1/1.pdf.Google Scholar
  20. 20.
    Galano, A., Carbon nanotubes: promising agents against free radicals, Nanoscale, 2010, vol. 2, no. 3, pp. 373–380. http://www.researchgate.net/publication/45275953. doi 10.1039/b9nr00364aCrossRefGoogle Scholar
  21. 21.
    Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M., Chemistry of carbon nanotubes, Chem. Rev., 2006, vol. 106, no. 3, pp. 1105–1136. http://pubs.acs.org/doi/abs/. doi 10.1021/cr050569oCrossRefGoogle Scholar
  22. 22.
    Li, Q., Wu, G., Ma, Y., and Wu, C., Grafting modification of carbon black by trapping macroradicals formed by sonochemical degradation, Carbon, 2007, vol. 45, no. 12, pp. 2411–2416. http://www.sciencedirect.com/science/article/pii/S0008622307003144. doi 10.1016/j.carbon.2007.06.052CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Mansurova
    • 1
  • O. Yu. Isupova
    • 1
  • E. A. Durnev
    • 1
  • K. E. Gavrilov
    • 1
  • A. A. Burkov
    • 1
  1. 1.Vyatka State UniversityKirovRussia

Personalised recommendations