Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 238–244 | Cite as

Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity

  • G. B. Kunshina
  • I. V. Bocharova
  • V. I. Ivanenko
Materials for Electronics Technology


A new effective method is proposed for synthesis of the Li1.5Al0.5Ge1.5(PO4)3 powdered solid electrolyte of NASICON structure with high lithium ionic conductivity. The advantage of the method consists in use of a liquid-phase precursor based on the water-soluble Ge(IV) oxalate complex. Chemical interaction in a multicomponent solution containing a liquid-phase precursor results in a target product without the formation of intermediate compounds. This makes it possible to diminish considerably the synthesis temperature (to 650°C) and duration of preparation of Li1.5Al0.5Ge1.5(PO4)3 powders owing to a better homogenization of the reaction mixture and also to simplify the technological operations. The synthesized Li1.5Al0.5Ge1.5(PO4)3 powders are studied by the XRD, DSC/TG, and IR spectroscopy methods, as well as by chemical analysis, SEM, and impedance spectroscopy. The conditions are determined for production of polycrystalline Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with the maximum bulk ionic conductivity of 1 × 10–3 S/cm at room temperature.


lithium-conducting solid electrolytes ionic conductivity synthesis complex phosphates electrochemical impedance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takada, K., Progress and prospective of solid-state lithium batteries, Acta Mater., 2013, vol. 61, pp. 759–770.CrossRefGoogle Scholar
  2. 2.
    Ren, Y., Chen, K., Chen, R., Liu, T., Zhang, Y., and Nan, C.-W., Oxide electrolytes for lithium batteries, J. Am. Ceram. Soc., 2015, vol. 98, no. 12, pp. 3603–3623.CrossRefGoogle Scholar
  3. 3.
    Aleshin, G.Yu., Semenenko, D.A., Belova, A.I., Zakharchenko, T.K., Itkis, D.M., Goodilin, E.A., and Tretyakov, Yu.D., Protected anodes for lithium-air batteries, Solid State Ionics, 2011, vol. 184, pp. 62–64.CrossRefGoogle Scholar
  4. 4.
    Safanama, D., Damiano, D., Rao, R.P., and Adams, S., Lithium conducting solid electrolyte Li1+xAlxGe2–x(PO4)3 membrane for aqueous lithium air battery, Solid State Ionics, 2014, vol. 262, pp. 211–215.CrossRefGoogle Scholar
  5. 5.
    Goodenough, J.B., Hong, H.Y.-P., and Kafalas, J.A., Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 1976, vol. 11, no. 2, pp. 203–220.CrossRefGoogle Scholar
  6. 6.
    Shi, J., Xia, Y., Han, S., Fang, L., Pan, M., Xu, X., and Liu, Z., Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic-organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries, J. Power Sources, 2015, vol. 273, pp. 389–395.CrossRefGoogle Scholar
  7. 7.
    Kobayashi, E., Plashnitsa, L.S., Doi, T., Okada, S., and Yamaki, J., Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes, Electrochem. Commun., 2010, vol. 12, pp. 894–896.CrossRefGoogle Scholar
  8. 8.
    Kunshina, G.B., Kuz’min, A.P., Gromov, O.G., and Prokopets, V.E., Stability of lithium-ion-conducting ceramics connected with electroconductive materials, in Tekhnologiya mineral’nogo syr’ya i fiziko-khimicheskie issledovaniya produktov ego pererabotki (Technology of Raw Minerals and Physicochemical Studies of Its Processing Products), Apatity, 1994, pp. 45–49.Google Scholar
  9. 9.
    Zhang, M., Takahashi, K., Imanishi, N., Takeda, Y., Yamamoto, O., Chi, B., Pu, J., and Li, J., Preparation and electrochemical properties of Li1+xAlxGe2–x(PO4)3 synthesized by a sol-gel method, J. Electrochem. Soc., 2012, vol. 159, no. 7, pp. A1114–A1119.CrossRefGoogle Scholar
  10. 10.
    Xu, X., Wen, Z., Wu, X., Yang, X., and Gu, Z., Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x = 0.0–0.20) with good electrical and electrochemical properties, J. Am. Ceram. Soc., 2007, vol. 90, no. 9, pp. 2802–2806.CrossRefGoogle Scholar
  11. 11.
    Arbi, K., Bucheli, W., Jimenez, R., and Sanz, J., High lithium ion conducting solid electrolytes based on NASICON Li1 + xAlxM2–x(PO4)3 materials (M = Ti,Ge and 0 = x = 0.5), J. Eur. Ceram. Soc., 2015, vol. 35, no. 5, pp. 1477–1484.CrossRefGoogle Scholar
  12. 12.
    Feng, J.K., Lu, L., and Lai, M.O., Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3, J. Alloys Compd., 2010, vol. 501, pp. 255–258.CrossRefGoogle Scholar
  13. 13.
    Cretin, M. and Fabry, P., Comparative study of lithium ion conductors in the system Li1 + xAlx (PO4)3 with AIV = Ti or Ge and 0 = x = 0.7 for use as Li+ sensitive membranes, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2931–2940.CrossRefGoogle Scholar
  14. 14.
    Zhang, M., Huang, Z., Cheng, J., Yamamoto, O., Imanishi, N., Chi, B., Pu, J., and Li, J., Solid state lithium ionic conducting thin film Li1.4Al0.4Ge1.6(PO4)3 prepared by tape casting, J. Alloys Compd., 2014, vol. 590, pp. 147–152.CrossRefGoogle Scholar
  15. 15.
    Kotobuki, M. and Koishi, M., Sol-gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte, Ceram. Int., 2015, vol. 41, pp. 8562–8567.CrossRefGoogle Scholar
  16. 16.
    Kichambare, P.D., Howell, T. and Rodrigues, S., Solgel- derived lithium superionic conductor electrolyte for solid-state lithium-oxygen batteries, Energy Technol., 2014, vol. 2, no. 4, pp. 391–396.CrossRefGoogle Scholar
  17. 17.
    Fu, J., Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5, Solid State Ionics, 1997, vol. 104, pp. 191–194.CrossRefGoogle Scholar
  18. 18.
    Zhuravlev, V.D., Vinogradova-Zhabrova, A.S., and Bamburov, V.G., Germanate synthesis via complexonates, Dokl. Chem., 2008, vol. 422, no. 1, pp. 220–224.CrossRefGoogle Scholar
  19. 19.
    Kunshina, G.B., Bocharova, I.V. and Lokshin, E.P., Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte, Inorg. Mater., 2016, vol. 52, no. 3, pp. 279–284.CrossRefGoogle Scholar
  20. 20.
    Irvin, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: characterization by impedance spectroscopy, Adv. Mater., 1990, vol. 2, no. 3, pp. 132–138.CrossRefGoogle Scholar
  21. 21.
    Kubanska, A., Castro, L., Tortet, L., et al., Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass ceramics, Solid State Ionics, 2014, vol. 266, pp. 44–50.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. B. Kunshina
    • 1
  • I. V. Bocharova
    • 1
  • V. I. Ivanenko
    • 1
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science CenterRussian Academy of SciencesApatity, Murmansk oblastRussia

Personalised recommendations