Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 260–267 | Cite as

Effect of oxygen impurity in sodium–potassium melt on the corrosion processes at the interface between vanadium alloy and eutectic melt

  • V. P. Krasin
  • I. E. Lyublinski
  • S. I. Sojustova
  • V. V. Semenov
Materials of Power Engineering and RadiationResistant Materials
  • 25 Downloads

Abstract

An analysis of available experimental data on thermodynamic activity coefficient of oxygen in binary liquid metal Na–K alloys is carried out. Thermodynamic correlations based on the coordination cluster model are used for theoretical evaluation of the effect of oxygen impurity on the solubility of vanadium in sodium–potassium eutectic alloy in the temperature range of 400–800°C. Isothermal capsule experiments qualitatively confirm the results of calculations of vanadium solubility in Na–K melt. On the basis of derived thermodynamic relationships the threshold concentration for the formation of ternary oxide NaVO2 on the surface of the solid vanadium in the Na0.32K0.68 melt has been calculated. The calculation results are compared with the corresponding values for the sodium coolant.

Keywords

liquid metal coolant coordination-cluster model Gibbs–Duhem equation vanadium alloys sodium–potassium melt isothermal mass transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Natesan K., Reed C.B., and Mattas R.F. Assessment of alkali metal coolants for the ITER blanket, Fusion Eng. Des., 1995, vol. 27, pp. 457–466. doi 10.1016/0920-3796(95)90159-0CrossRefGoogle Scholar
  2. 2.
    Beskorovainyi, N.M. and Ioltukhovskii, A.G., Konstruktsionnye materialy i zhidkometallicheskie teplonositeli (Constructional Materials and Liquid Metal Coolants), Moscow: Energoatomizdat, 1983.Google Scholar
  3. 3.
    Eliseeva, O.I., The interaction of vanadium alloys with liquid sodium in static conditions, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2011, no. 2, pp. 3–20.Google Scholar
  4. 4.
    Zhang, J. and Kapernick, R., Oxygen chemistry in liquid sodium–potassium systems, Progr. Nucl. Energy, 2009, vol. 51, pp. 614–623. doi 10.1016/j.pnucene.2008.12.001CrossRefGoogle Scholar
  5. 5.
    Semenov, V.V., Lyublinski, I.E., Krasin, V.P., Vertkov, A.V., Sojustova, S.I., Potapova, A.E., and Zharkov, M.Yu., The compatibility of vanadium and V–4Ti–4Cr alloy with molten sodium-potassium eutectic, Perspekt. Mater., 2014, no. 7, pp. 21–29.Google Scholar
  6. 6.
    Semenov, V.V., Lyublinski, I.E., Krasin, V.P., Vertkov, A.V., Soyustova, S.I., Potapova, A.E., and Zharkov, M.Yu., Corrosion resistance of V–4Ti–4Cr alloy in convection flow of eutectic Na-K alloy, Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 2, pp. 133–137.CrossRefGoogle Scholar
  7. 7.
    Borgstedt, H.U. and Frees, G., Oxidation of metals and alloys for cladding of fast reactor fuel elements by oxygen- containing liquid sodium, Proc. Fourth Int. Congr. on Metallic Corrosion, Houston, TX: Natl. Assoc. Corros. Eng., 1972, pp. 325–330.Google Scholar
  8. 8.
    Krishnamurthy, D., Varamban, S.V., Thiruvengadasami, A., and Mathews, C.K., Solubility of oxygen in sodium-potassiumalloys, J. Less-Common Met., 1989, vol. 153, pp. 363–372.CrossRefGoogle Scholar
  9. 9.
    Saboungi, M.-L., Caveny, D., Bloom, I., and Blander, M., The coordination cluster theory: extension to multicomponent systems, Metall. Trans. A, 1987, vol. 18, pp. 1779–1783.CrossRefGoogle Scholar
  10. 10.
    Lupis, C.H.P., Chemical Thermodynamics of Materials, New York: North Holland, 1983.Google Scholar
  11. 11.
    Belashchenko, D.K., Diffusion mechanisms in disordered systems: Computer simulation, Usp. Fiz. Nauk, 1999, vol. 169, no. 4, pp. 361–384.CrossRefGoogle Scholar
  12. 12.
    Ostrovskii, O.I., Grigoryan, V.A., and Vishkarev, A.F., Svoistva metallicheskikh rasplavov (Properties of Metal Melts Moscow), Moscow: Metallurgiya, 1988.Google Scholar
  13. 13.
    Skryshevskii, A.F., Strukturnyi analiz zhidkostei i amorfnykh tel (Structural Analysis of Liquids and Amorphous Solids), Moscow: Vysshaya Shkola, 1980.Google Scholar
  14. 14.
    Akande, A., Adebayo, G.A., and Akinlade, O., Structural properties of low-density liquid alkali metals, Pramana, 2005, vol. 65, pp. 1085–1096.CrossRefGoogle Scholar
  15. 15.
    Chan, Y.C. and Veleckis, E.A., Thermodynamic investigation of dilute solutions of hydrogen in liquid Li–Pballoys, J. Nucl. Mater., 1984, vols. 122–123, pp. 935–940.CrossRefGoogle Scholar
  16. 16.
    Kishimoto, A., Wada, A., Michimoto, T., and Furukawa, T., Solubility and activity of oxygen in Pb–Bi melts, Mater. Trans., 2006, vol. 47, pp. 122–128.CrossRefGoogle Scholar
  17. 17.
    Saboungi, M.-L., Cerisier, P., and Blander, M., The coordination cluster theory–description of the activity coefficients of dilute solutions of oxygen and sulfur in binary alloys, Metall. Trans. B, 1982, vol. 13, no. 9, pp. 429–437.CrossRefGoogle Scholar
  18. 18.
    Krasin, V.P. and Soyustova, S.I., Comparison of liquid metal solution model predictions with compatibility data of niobium with liquid sodium, J. Nucl. Mater., 2014, vol. 451, pp. 24–27.CrossRefGoogle Scholar
  19. 19.
    Kuzin, A.N., Lyublinski, I.E., and Beskorovainyi, N.M., The calculation of the liquidus lines in the systems of alkali metal—transition metal from the alkali metal, in Raschety i eksperimental’nye metody postroeniya diagram sostoyaniya (Calculations and Experimental Methods of Construction of Phase Diagrams), Moscow: Nauka, 1985.Google Scholar
  20. 20.
    Stecura, S., Solubilities of Vanadium, Titanium, and Zirconium in Liquid Potassium, Report NASA TND-5093, Washington, DC: NASA, 1969.Google Scholar
  21. 21.
    Natesan, K., Influence of nonmetallic elements on the compatibility of structural materials with liquid alkali metals, J. Nucl. Mater., 1983, vol. 115, no. 3, pp. 251–262.CrossRefGoogle Scholar
  22. 22.
    Bhat, N.P. and Borgstedt, H.U., Corrosion behavior of structural materials in sodium influenced by formation of ternary oxides, Werkst. Korros., 1988, vol. 39, pp. 115–123.CrossRefGoogle Scholar
  23. 23.
    Polley, M.V. and Skyrme, G., An analysis of the corrosion of pure iron in sodium loop systems, J. Nucl. Mater., 1977, vol. 66, no. 3, pp. 221–235.CrossRefGoogle Scholar
  24. 24.
    Krasin, V.P., Mitin, Yu.V., and Kirillov, V.B., Forecasting of direction of isothermal mass transfer in metallic melts using the interaction parameters, Zh. Fiz. Khim., 1990, vol. 64, no. 10, pp. 2772–2776.Google Scholar
  25. 25.
    Weeks, J.R. and Isaacs, H.S., Corrosion and deposition of steels and nickel-base alloys in liquid sodium, Adv. Corros. Sci. Technol., 1973, vol. 3, pp. 1–66.CrossRefGoogle Scholar
  26. 26.
    Borgstedt, H.U. and Guminski, C., Metals in Liquid Alkali Metals, IUPAC Solubility Data Ser., Oxford: Oxford Univ. Press, 1996, vols. 63–64.Google Scholar
  27. 27.
    Klueh, R.L., Effect of oxygen on niobium-sodium compatibility, Corrosion, 1971, vol. 27, no. 8, pp. 342–346.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. P. Krasin
    • 1
  • I. E. Lyublinski
    • 1
    • 2
  • S. I. Sojustova
    • 1
  • V. V. Semenov
    • 2
  1. 1.Moscow Polytechnic UniversityMoscowRussia
  2. 2.JSC Red StarMoscowRussia

Personalised recommendations