Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 203–210 | Cite as

Intensification of processes of electrodeposition of metals by use of various modes of pulse electrolysis

Physicochemical Principles of Design of Materials and Technologies


Investigations of the influence of various modes of electrolysis on the speed of processes of electrodeposition of metals are conducted. On the basis of theoretical investigations, the main potential opportunities for process intensification when using an pulsed current for processes whose speed is defined by mass transfer and charge transfer are defined. Weakly toxic electrolytes based on lactic acid are developed for formation of electroplatings by nickel, zinc, and tin; optimum parameters of stationary, galvanostatic, and potentsiostatic pulse electrolysis are determined. Investigations of kinetic regularities of the process of electrodeposition of metals are conducted, and the limiting stages of processes are defined. It is established that the greatest impact on the speed of electrodeposition of metals is exerted by potentiostatic pulse electrolysis. It is revealed that, to a greater degree, the intensification when using a pulsed current is characteristic of processes whose speed is limited by mass transfer.


pulse electrolysis intensification electroplated coatings process speed current density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anur’ev, V.I., Spravochnik konstruktora-mashinostroitelya (Handbook of Machine Engineer), Zhestkova, I.N., Ed., Moscow: Mashinostroenie, 2001, vol. 1.Google Scholar
  2. 2.
    Kudryavtsev, N.T., Elektrokhimicheskie pokrytiya metallami (Electrochemical Metal Coatings), Moscow: Khimiya, 1979.Google Scholar
  3. 3.
    Gamburg, Yu.D., Elektrokhimicheskaya kristallizatsiya metallov i splavov (Electrochemical Crystallization of Metals and Alloys), Moscow: Yanus-K, 1997.Google Scholar
  4. 4.
    Kochegarov, I.I., Khanin, I.V., Lysenko, A.V., Yurkov, N.K., and Almametov, B.V., Algorithm of revealing latent PCB defects by optical control, Izv. Vyssh. Uchebn. Zaved., Povolzhsk. Reg., Tekh. Nauki, 2013, no. 3 (27), pp. 105–114.Google Scholar
  5. 5.
    Damaskin, B.B. and Petrii, O.A., Vvedenie v elektrokhimicheskuyu kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vysshaya Shkola, 1985.Google Scholar
  6. 6.
    Polukarov, Yu.M. and Grinina, V.V., Electrodeposition of metals using the periodic currents and single pulses, Itogi Nauki Tekh.: Elektrokhim., 1985, vol. 22, pp. 3–62.Google Scholar
  7. 7.
    Kostin, N.A., Kublanovskii, V.S., and Zabludovskii, V.A., Impul’snyi elektroliz (Pulsed Electrolysis), Kiev: Naukova Dumka, 1989.Google Scholar
  8. 8.
    Sedoikin, A.A. and Tsupak, T.E., The role of migration mass transfer in the electrodeposition of nickel from sulfatechloride and chloride solutions containing succinic acid, Russ. J. Electrochem., 2008, vol. 44, no. 3, pp. 319–326.CrossRefGoogle Scholar
  9. 9.
    Druchenko, V.A. and Khizhkovaya, V.A., Electrolyte for a deposition of a gloss nickel coatings in the ultrasonic field, in Primenenie ul’trazvuka v mashinostroenii (Application of Ultrasound in Mechanical Engineering), Minsk: Inst. Nauchno-Tekh. Inf., BelSSR, 1964, pp. 151–154.Google Scholar
  10. 10.
    Vanteev, A.N., Vinogradov, S.N., Mal’tseva, G.N., and Shatalaeva, O.A., Influence of the cathode vibration and electromagnetic field on technological and kinetic parameters of electrodeposition of Zn–Ni alloy, Mater. II Vseros. nauchno-tekh. konf. “Zashchitnye pokrytiya v mashinostroenii i priborostroenii” (Proc. 2nd All- Russ. Sci.-Tech. Conf. “Protective Coatings in Machine Engineering and Instrumentation”), Penza: Privolzhsk. Dom Znanii, 2005, pp. 11—13Google Scholar
  11. 11.
    Vinogradov, S.N. and Naumov, L.V., Elektroosazhdenie splava kobal’t-nikel’ pri vibratsii i v elektromagnitnom pole (Electrodeposition of Cobalt-Nickel Alloy at the Cathode Vibration and in an Electromagnetic Field), Available from VINITI, 2006, no. 756-V2006.Google Scholar
  12. 12.
    Gnusin, N.P. and Kovarskii, N.Ya., Sherokhovatost’ elektroosazhdennykh poverkhnostei (Roughness of the Electrodeposited Surfaces), Moscow: Nauka, 1970.Google Scholar
  13. 13.
    Krivtsov, A.K. and Khamaev, V.A., An electrolysis at a periodic current, Tr. Ivanovsk. Khim.-Tekhnol. Inst., 1968, no. 10, pp. 108–114.Google Scholar
  14. 14.
    Vetter, K.J., Electrochemical Kinetics: Theoretical and Experimental Aspects, New York: Academic, 1967.Google Scholar
  15. 15.
    Rotinyan, A.L., Tikhonov, K.I., and Shoshina, I.A., Teoreticheskaya elektrokhimiya (The Theory of Electrochemistry), Rotinyan, A.L., Ed., Leningrad: Khimiya, 1981.Google Scholar
  16. 16.
    Berezin, N.B., Gudin, N.V., and Sagdeev, K.A., Electrodeposition of nickel-phosphorous alloy from phosphate oxide electrolytes by pulse current, Gal’vanotekh. Obrab. Poverkhn., 1994, vol. 3, no. 4, pp. 18–21.Google Scholar
  17. 17.
    Berezin, N.B., Sagdeev, K.A., and Mezhevich, Zh.V., Kinetic parameters of electrochemical reaction in the conditions of stationary and pulse polarization of the cathode, Butlerovskie Soobshch., 2004, vol. 5, no. 1, pp. 44–47.Google Scholar
  18. 18.
    Perelygin, Yu.P., Kireev, S.Yu., Kireeva, S.N., Lipovskii, V.V., and Yagnichenko, N.V., RF Patent 2354756, Byull. Izobret., 2009, no. 13.Google Scholar
  19. 19.
    Kireev, S.Yu., Perelygin, Yu.P., Yagnichenko, N.V., Kireeva, T.N., and Kireev, Yu.I., RF Patent 2400570, Byull. Izobret., 2010, no. 27.Google Scholar
  20. 20.
    Kireev, S.Yu., Perelygin, Yu.P., and Kireev, A.Yu., RF Patent 2341592, Byull. Izobret., 2008, no. 35.Google Scholar
  21. 21.
    Kireev, S.Yu. and Perelygin, Yu.P., Lactic acid as a low toxic additive in electrolytes for production of metals and alloy coatings, Mir Gal’vaniki, 2009, no. 3 (10), pp. 34–36.Google Scholar
  22. 22.
    Perelygin, Yu.P., Kireev, S.Yu., and Kireev, A.Yu., Electrodeposition of tin from acidic lactate electrolyte on constant electric current, Izv. Vyssh. Uchebn. Zaved., Povolzhsk. Reg., Tekh. Nauki, 2007, no. 6, pp. 131–134.Google Scholar
  23. 23.
    Kireev, S.Yu., Perelygin, Yu.P., and Yagnichenko, N.V., Electrodeposition of zinc from acidic lactate electrolyte, Gal’vanotekh. Obrab. Poverkhn., 2011, no. 3, pp. 30–32.Google Scholar
  24. 24.
    Perelygin, Yu.P., Kireev, S.Yu., Lipovskii, V.V., and Yagnichenko, N.V., Electrodeposition of nickel from the acidic sulphate electrolytes containing lactic acid, Gal’vanotekh. Obrab. Poverkhn., 2008, no. 2, pp. 14–16.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Penza State UniversityPenzaRussia

Personalised recommendations