Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 296–304 | Cite as

The shear strength of Ti–HA composite coatings for intraosseous implants

  • V. I. Kalita
  • D. I. Komlev
  • A. Yu. Ivannikov
  • A. A. Radyuk
  • V. S. Komlev
  • V. I. Mamonov
  • M. A. Sevast’ianov
  • A. S. Baikin
Materials for Support of Human Activity and Environmental Protection

Abstract

Plasma spraying of composite coatings is developed and investigated. Three-dimensional capillary porous titanium (3DCP Ti) coatings with a thickness of 1 mm are sprayed using a wire. Hydroxyapatite (HA) coatings with a thickness of 0.08–0.35 mm are sprayed on 3DCP Ti coatings at a temperature of 300–550°C. The joint between the coating and plastic is analyzed at shear. The plastic simulates bone tissue that grows into the coating surface. The heating of the 3DCP Ti coating to 550°С when the HA coating is being sprayed increases the shear strength of the coating with respect to the plastic to 9.8 MPa. Modeling approximations are proposed for the shear of the joint between the coating and the plastic.

Keywords

implants plasma spraying composite coatings three-dimensional capillary porous titanium hydroxyapatite shear strength plastic model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berndt, C.C., et al., A review of hydroxyapatite coatings manufactured by thermal spray, in Advances in Calcium Phosphate Biomaterials, Berlin: Springer-Verlag, 2014, pp. 267–329.CrossRefGoogle Scholar
  2. 2.
    Dorozhkin, S.V., Review calcium orthophosphate deposits: Preparation, properties and biomedical applications, Mater. Sci. Eng., C, 2015, vol. 55, pp. 272–326.CrossRefGoogle Scholar
  3. 3.
    Sahay, V., Lare, P.J., and Hahn, H., Physical and mechanical characterization of porous coatings for medical and dental devices, Proc. Third National Thermal Spray Conf. “Thermal Spray, Research, and Application, Long Beach, CA, May 20–25, 1990”, Metals Park, 1990, pp. 425–430.Google Scholar
  4. 4.
    Harris, D.H., Bioinert CP–Ti and Ti–6Al–4V Coatings by the Arc-Plasma Spray Process, Dayton, OH: Titan. Dev. Assoc., 1990, pp. 636–645.Google Scholar
  5. 5.
    Borsari, V., Giavaresi, G., Fini, M., Torricelli, P., Salito, A., Chiesa, R., and Giardino, R., Physical characterization of different-roughness titanium surfaces, with and without hydroxyapatite coating, and their effect on human osteoblast-like cells, J. Biomed. Mater. Res., Part B, 2005, vol. 75, no. 2, pp. 359–368.Google Scholar
  6. 6.
    Borsari, V., Fini, M., Giavaresi, G., Tschon, M., Chiesa, R., Chiusoli, L., and Giardino, R., Comparative in vivo evaluation of porous and dense duplex titanium and hydroxyapatite coating with high roughnesses in different implantation environments, J. Biomed. Mater. Res., 2009, vol. 89, no. 2, pp. 550–560.CrossRefGoogle Scholar
  7. 7.
    Kalita, V.I., Gnedovets, A.G., Mamaev, A.I., Mamaeva, V.A., Malanin, D.A., and Pisarev, V.B., Plasma deposited bioactive porous coatings for intrabone implants, Proc. 17th Int. Symp. on Plasma Chemistry (ISPC–17), Toronto, August 7–12, 2005, Toronto: Univ. of Toronto Press, 2005,pp. 1105–1106.Google Scholar
  8. 8.
    Gnedovets, A.G., Kalita, V.I., Komlev, D.I., Yerokhin, A.L., and Matthews, A., Plasma spraying of capillary- porous coatings: experiments, modeling and applications, Int. Vacuum Congr. IVC-16/ICSS-12/NANO-8, Venice, Trento: Italian Vac. Soc., 2004, pp. 398–399.Google Scholar
  9. 9.
    Kalita, V.I., Bocharova, M.A., Gnedovets, A.G., Trushnicova, A.S., Yerokhin, A.L., Matthews, A., and Shaternicov, B.N., Structure and mechanical properties of novel plasma sprayed titanic capillary-porous for intrabone implants, Int. Vacuum Congr. IVC-16/ICSS-12/NANO-8, Venice, Trento: Italian Vac. Soc., 2004, pp. 58–59.Google Scholar
  10. 10.
    Kalita, V.I., Bocharova, M.A., Trushnikova, A.S., and Shaternikov, B.N., Surface structure of titanium materials intended for intraosseous implants, Russ. Metall. (Engl. Transl.), 2005, no. 3, pp. 282–288.Google Scholar
  11. 11.
    Kalita, V.I. and Gnedovets, A.G., Plasma spraying of capillary porous coating: Experiments, modeling, and biomedical applications, Plasma Process. Polym., 2005, no. 2, pp. 485–492.CrossRefGoogle Scholar
  12. 12.
    Van Oirschot B.A., Eman R.M., Habibovic P., Leeuwenburgh S.C., Weinans H., Alblas J., de Boer J. Comparing the osteophilicity of bone implant surface modifications in a cassette model on the decorticated goat spinal transverse process. Surface Modifications for Endosseous Implant Materials, 2015, pp. 21–43.Google Scholar
  13. 13.
    Kalita, V.I., Komlev, D.I., Komlev, V.S., and Radyuk, A.A., The shear strength of three-dimensional capillaryporous titanium coatings for intraosseous implants, Mater. Sci. Eng., C, 2016, vol. 60, pp. 255–259.CrossRefGoogle Scholar
  14. 14.
    Xien, Y.T., Zhengn, X.B., Huang, L.P., and Ding, C.X., Key,short communication. In vitro cytocompatibility of plasma-sprayed dicalciumsilicate/zirconia composite coatings, Ceram. Int., 2013, vol. 39, pp. 4707–4711.CrossRefGoogle Scholar
  15. 15.
    Rakngarm Nimkerdphol, A., Otsuka, Y., and Mutoh, Y., Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF), J. Mech. Behav. Biomed. Mater., 2014, vol. 36, pp. 98–108.CrossRefGoogle Scholar
  16. 16.
    Khalid M., Mujahid M., Khan A. Nusair, and Rawat R.S., Dip-coating of nanohydroxyapatite on titanium alloy with plasma assisted ?-alumina buffer layer: A novel coating approach, J. Mater. Sci. Technol., 2013, vol. 29, no. 6, pp. 557–564.CrossRefGoogle Scholar
  17. 17.
    Demnati, I., Grossin, D., Combes, C., and Rey, C., Plasma-sprayed apatite coatings: Review of physical–chemical characteristics and their biological consequences, J. Med. Biol. Eng., 2014, vol. 34, no. 1, pp. 1–7.CrossRefGoogle Scholar
  18. 18.
    Mohseni, E., Zalnezhad, E., and Bushroa, A.R., Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper, Int. J. Adhes. Adhes., 2014, vol. 48, pp. 238–257.CrossRefGoogle Scholar
  19. 19.
    Clemens, J.A.M., Klein, C.P.A.T., Vriesde, R.C., Rozing, P.M., and de Groot, K., Healing of large (2 mm) gaps around calcium phosphate-coated bone implants: a study in goats with a follow-up of 6 months, J. Biomed. Mater. Res., 1998, vol. 40, pp. 341–349.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. I. Kalita
    • 1
  • D. I. Komlev
    • 1
  • A. Yu. Ivannikov
    • 1
  • A. A. Radyuk
    • 1
  • V. S. Komlev
    • 1
  • V. I. Mamonov
    • 1
  • M. A. Sevast’ianov
    • 1
  • A. S. Baikin
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations