Skip to main content
Log in

Composite materials based on oxides of d and f elements and carbon layers

  • Materials of Power Engineering and RadiationResistant Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Nanocrystalline powder (~20 nm) with the composition of (ZrO2)0.6(In2O3)0.04 is synthesized on the basis of a co-precipitation method. After its consolidation, a dense and porous ceramic matrix for supercapacitor electrodes is obtained. The deposition conditions are determined for thin nanocarbon and MnO2, Co3O4 layers on the porous ceramic or metal matrix. It is shown that the model supercapacitor with composite electrodes based on nickel foam and thin layers of nanocarbon and MnO2 has the highest average specific capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., Tsvetkova, I.N., and Shilova, O.A., Synthesis and physico-chemical properties of the electrode and electrolyte nanocomposites for supercapacitors, Fiz. Khim. Stekla, 2012, vol. 38, no. 5, pp. 653–664.

    Google Scholar 

  2. Vol’fkovich, Yu.M. and Serdyuk, T.M., Electrochemical capacitors, Elektrokhim. Energ., 2001, vol. 1, no. 4, pp. 14–28.

    Google Scholar 

  3. Shilova, O.A., Antipov, V.N., Tikhonov, P.A., Kruchinina, I.Y., Arsentev, M.Y., Panova, T.I., Morozova, L.V., Moskovskaya, V.V., Kalinina, M.V., and Tsvetkova, I.N., Ceramic nanocomposites based on oxides of transition metals for ionistors, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 570–578.

    Article  CAS  Google Scholar 

  4. Cottineau, T., Toupin, M., Delahaye, T., Brousse, T., and Bélanger, D., Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A: Mater. Sci. Process., 2006, vol. 82, no. 4, pp. 599–606.

    Article  CAS  Google Scholar 

  5. Kovalenko, A.S, Shilova, O.A., Morozova, L.V., Kalinina, M.V., Drozdova, I.A., and Arsent’ev, M.Yu., Feature of the synthesis and the study of nanocrystalline cobalt-nickel spinel, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 106–113.

  6. Kalinina, M.V., Morozova, L.V., Khlamov, I.I., Egorova, T.L., Arsent’ev, M.Yu., Drozdova, I.A., and Shilova, O.A., Synthesis and analysis of nanoceramics based on cobalt metaniobate, Fiz. Khim. Stekla, 2014, vol. 40, no. 5, pp. 759–765.

    Google Scholar 

  7. Avinash Balakrishnan and Subramanian, K.R.V., Nanostructured Ceramic Oxides for Supercapacitor Applications, Boca Raton, FL: CRC Press, 2014.

    Google Scholar 

  8. Duran, P., Villegas, M., and Capel, F., Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powders, J. Eur. Ceram. Soc., 1996, vol. 16, no. 9, pp. 945–952.

    Article  CAS  Google Scholar 

  9. Morozova, L.V., Panova, T.I., Popov, V.P., Tsvetkova, I.N., and Shilova, O.A., Synthesis and study of oxide and phosphorsilicate nanocomposites for the creation of new-generation supercapacitors, Glass Phys. Chem., 2012, vol. 38, no. 3, pp. 332–338.

    Article  CAS  Google Scholar 

  10. Khimiya tverdogo tela. Khimicheskie problemy sozdaniya novykh materialov (Solid State Chemistry. Chemical Problems of Creating New Materials), Murin, I.V., Ed., St. Petersburg: St.-Peterb. Gos. Univ., 2003.

  11. Arsent’ev, M.Yu., Kalinina, M.V., and Tikhonov, P.A., RF Patent 134534, 2013.

  12. Kukovitskii, E.F., L’vov, S.G., Sainov, N.A., Shustov, N.A., Kiselev, N.A., Izrael’yants, K.P., and Musatov, L.A., The role of the structure of the surface layers of metallic nickel in the catalytic synthesis of carbon nanotube field emitters, Mikrosist. Tekh., 2002, no. 7, pp. 28–31.

    Google Scholar 

  13. Kukovitskii, E.F. and L’vov, S.G., Carbon nanotube cathodes on nickel cores, Nano-Mikrosist. Tekh., 2010, no. 6, pp. 2–5.

    Google Scholar 

  14. Mishchenko, S.V., Rukhov, A.V., Tkachev, A.G., and Tugolukov, E.N., Specific features of the synthesis of carbon nanomaterials in the device with induction heating of the catalyst, Vestn. Tambov. Gos. Tekh. Univ., 2008, vol. 14, no. 4, pp. 820–824.

    CAS  Google Scholar 

  15. Pavlov, G., Technological equipment for the formation of carbon layers, Nanoindustriya, 2007, no. 2, pp. 28–29.

    Google Scholar 

  16. Chou, S.-L., Wang, J.-Z., Chew, S.-Y., Liu, H.-K., and Dou, S.-X., Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors, Electrochem. Commun., 2008, vol. 10, no. 11, pp. 1724–1727.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kalinina.

Additional information

Original Russian Text © M.V. Kalinina, L.V. Morozova, T.L. Egorova, M.Yu. Arsentyev, I.I. Khlamov, P.A. Tikhonov, O.A. Shilova, 2016, published in Perspektivnye Materialy, 2016, No. 8, pp. 22–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, M.V., Morozova, L.V., Egorova, T.L. et al. Composite materials based on oxides of d and f elements and carbon layers. Inorg. Mater. Appl. Res. 8, 254–259 (2017). https://doi.org/10.1134/S2075113317020071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317020071

Keywords

Navigation