Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 254–259 | Cite as

Composite materials based on oxides of d and f elements and carbon layers

  • M. V. Kalinina
  • L. V. Morozova
  • T. L. Egorova
  • M. Yu. Arsentyev
  • I. I. Khlamov
  • P. A. Tikhonov
  • O. A. Shilova
Materials of Power Engineering and RadiationResistant Materials
  • 19 Downloads

Abstract

Nanocrystalline powder (~20 nm) with the composition of (ZrO2)0.6(In2O3)0.04 is synthesized on the basis of a co-precipitation method. After its consolidation, a dense and porous ceramic matrix for supercapacitor electrodes is obtained. The deposition conditions are determined for thin nanocarbon and MnO2, Co3O4 layers on the porous ceramic or metal matrix. It is shown that the model supercapacitor with composite electrodes based on nickel foam and thin layers of nanocarbon and MnO2 has the highest average specific capacitance.

Keywords

ceramic composite materials electrodes for supercapacitors ion layering chemical vapor deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., Tsvetkova, I.N., and Shilova, O.A., Synthesis and physico-chemical properties of the electrode and electrolyte nanocomposites for supercapacitors, Fiz. Khim. Stekla, 2012, vol. 38, no. 5, pp. 653–664.Google Scholar
  2. 2.
    Vol’fkovich, Yu.M. and Serdyuk, T.M., Electrochemical capacitors, Elektrokhim. Energ., 2001, vol. 1, no. 4, pp. 14–28.Google Scholar
  3. 3.
    Shilova, O.A., Antipov, V.N., Tikhonov, P.A., Kruchinina, I.Y., Arsentev, M.Y., Panova, T.I., Morozova, L.V., Moskovskaya, V.V., Kalinina, M.V., and Tsvetkova, I.N., Ceramic nanocomposites based on oxides of transition metals for ionistors, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 570–578.CrossRefGoogle Scholar
  4. 4.
    Cottineau, T., Toupin, M., Delahaye, T., Brousse, T., and Bélanger, D., Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A: Mater. Sci. Process., 2006, vol. 82, no. 4, pp. 599–606.CrossRefGoogle Scholar
  5. 5.
    Kovalenko, A.S, Shilova, O.A., Morozova, L.V., Kalinina, M.V., Drozdova, I.A., and Arsent’ev, M.Yu., Feature of the synthesis and the study of nanocrystalline cobalt-nickel spinel, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 106–113.Google Scholar
  6. 6.
    Kalinina, M.V., Morozova, L.V., Khlamov, I.I., Egorova, T.L., Arsent’ev, M.Yu., Drozdova, I.A., and Shilova, O.A., Synthesis and analysis of nanoceramics based on cobalt metaniobate, Fiz. Khim. Stekla, 2014, vol. 40, no. 5, pp. 759–765.Google Scholar
  7. 7.
    Avinash Balakrishnan and Subramanian, K.R.V., Nanostructured Ceramic Oxides for Supercapacitor Applications, Boca Raton, FL: CRC Press, 2014.Google Scholar
  8. 8.
    Duran, P., Villegas, M., and Capel, F., Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powders, J. Eur. Ceram. Soc., 1996, vol. 16, no. 9, pp. 945–952.CrossRefGoogle Scholar
  9. 9.
    Morozova, L.V., Panova, T.I., Popov, V.P., Tsvetkova, I.N., and Shilova, O.A., Synthesis and study of oxide and phosphorsilicate nanocomposites for the creation of new-generation supercapacitors, Glass Phys. Chem., 2012, vol. 38, no. 3, pp. 332–338.CrossRefGoogle Scholar
  10. 10.
    Khimiya tverdogo tela. Khimicheskie problemy sozdaniya novykh materialov (Solid State Chemistry. Chemical Problems of Creating New Materials), Murin, I.V., Ed., St. Petersburg: St.-Peterb. Gos. Univ., 2003.Google Scholar
  11. 11.
    Arsent’ev, M.Yu., Kalinina, M.V., and Tikhonov, P.A., RF Patent 134534, 2013.Google Scholar
  12. 12.
    Kukovitskii, E.F., L’vov, S.G., Sainov, N.A., Shustov, N.A., Kiselev, N.A., Izrael’yants, K.P., and Musatov, L.A., The role of the structure of the surface layers of metallic nickel in the catalytic synthesis of carbon nanotube field emitters, Mikrosist. Tekh., 2002, no. 7, pp. 28–31.Google Scholar
  13. 13.
    Kukovitskii, E.F. and L’vov, S.G., Carbon nanotube cathodes on nickel cores, Nano-Mikrosist. Tekh., 2010, no. 6, pp. 2–5.Google Scholar
  14. 14.
    Mishchenko, S.V., Rukhov, A.V., Tkachev, A.G., and Tugolukov, E.N., Specific features of the synthesis of carbon nanomaterials in the device with induction heating of the catalyst, Vestn. Tambov. Gos. Tekh. Univ., 2008, vol. 14, no. 4, pp. 820–824.Google Scholar
  15. 15.
    Pavlov, G., Technological equipment for the formation of carbon layers, Nanoindustriya, 2007, no. 2, pp. 28–29.Google Scholar
  16. 16.
    Chou, S.-L., Wang, J.-Z., Chew, S.-Y., Liu, H.-K., and Dou, S.-X., Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors, Electrochem. Commun., 2008, vol. 10, no. 11, pp. 1724–1727.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Kalinina
    • 1
  • L. V. Morozova
    • 1
  • T. L. Egorova
    • 1
  • M. Yu. Arsentyev
    • 1
  • I. I. Khlamov
    • 1
  • P. A. Tikhonov
    • 1
  • O. A. Shilova
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of ScienceSt. PetersburgRussia

Personalised recommendations