Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 2, pp 286–291 | Cite as

Thermal extrusion three-dimensional printing of copolymer polyethylene glycol and poly-ε-caprolactone matrix structures

  • D. S. P. Jang
  • J. Y. Jeng
  • A. G. Dunaev
  • L. I. Krotova
  • A. V. Mironov
  • O. A. Mironova
  • V. K. Popov
  • Y. -Y. Chen
Materials for Support of Human Activity and Environmental Protection

Abstract

The process of formation of matrix structures (matrices) from bioresorbable triblock polyethylene glycol and poly-ε-caprolactone copolymers with different molecular weights, as well as their composites with finely divided hydroxyapatite (particle size is about 1 μm), was developed and studied with thermal extrusion three-dimensional printing. The internal structure and surface morphology of the matrices obtained were investigated with optical and scanning electron microscopy. The effect of extruder temperature and flow rate of a polymer melt through the extruder on molecular weight distribution of the starting copolymers and formation of solid-state microstructures from them was studied with gel permeation chromatography

Keywords

bioresorbable polymers mineral-polymer composites three-dimensional (3D) printing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atala, A., Lanza, R., Thompson, J., and Nerem, R., Principles of Regenerative Medicine, New York: Academic, 2008.Google Scholar
  2. 2.
    Lee, H., Khang, G., Kim, M., Rhee, J.M., Lee, I., and Min, B., Scaffold for tissue engineering, J. Tissue Eng. Regener. Med., 2006, vol. 3, pp. 1738–2696.Google Scholar
  3. 3.
    Griffith, L.G. and Naughton, G., Tissue engineering—current challenges and expanding opportunities, Science, 2002, no. 295, pp. 1009–1014.CrossRefGoogle Scholar
  4. 4.
    Atala, A., Tissue engineering of reproductive tissues and organs, Fertil Steril., 2012, no. 98(1), pp. 21–29.CrossRefGoogle Scholar
  5. 5.
    Biosovmestimye materialy (Biocompatible Materials), Sevast’yanov, V.I. and Kirpichnikov, M.P., Eds., Moscow: Med. Inf. Agentstvo, 2011.Google Scholar
  6. 6.
    Shtil’man, B.I., Polimery mediko-biologicheskogo naznacheniya (Polymers for Biomedical Application), Moscow: Akademkniga, 2006.Google Scholar
  7. 7.
    Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medicine, Russ. Chem. Rev., 2010, vol. 79, no. 1, pp. 15–30.CrossRefGoogle Scholar
  8. 8.
    Fu, Q., Saiz, E., and. Tomsia, A.P., Bioinspired strong and highly porous glass scaffolds, Adv. Funct. Mater., 2011, vol. 21, no. 6, pp. 1058–1063.CrossRefGoogle Scholar
  9. 9.
    Biomaterials, Artificial Organs and Tissue Engineering, Hench, L.L. and Jones, J.R., Eds., Boca Raton, FL: CRC Press, 2005.Google Scholar
  10. 10.
    El-Sherbiny, I.M. and Yacoub, M.H., Hydrogel scaffolds for tissue engineering: progress and challenges, Global Cardiol. Sci. Pract., 2013, no. 3, pp. 316–342.Google Scholar
  11. 11.
    Zalipsky, S., Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates, Bioconjugate Chem., 1995, no. 6, pp. 150–165.CrossRefGoogle Scholar
  12. 12.
    Aimetti, A.A. and Tibbitt, M.W., Human neutrophil elastase responsive delivery from poly(ethylene glycol) hydrogels, Biomacromolecules, 2009, vol. 10, no. 6, pp. 1484–1489.CrossRefGoogle Scholar
  13. 13.
    Oh, S.H., Park, I.K., Kim, J.M., and Lee, J.H., In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method, Biomaterials, 2007, vol. 28, pp. 1664–1671.CrossRefGoogle Scholar
  14. 14.
    Jiang, C.P., Chen, Y.Y., Hsieh, M.F., and Lee, H.M., Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds, Biomed. Microdevices, 2013, vol. 15, pp. 369–379.CrossRefGoogle Scholar
  15. 15.
    Nannan, G. and Ming, C.L., Additive manufacturing: technology, applications and research needs, Front. Mech. Eng., 2013, vol. 8, no. 3, pp. 215–243.Google Scholar
  16. 16.
    Niaounakis, M., Biopolymers: Processing and Products, New York: Elsevier, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. S. P. Jang
    • 1
  • J. Y. Jeng
    • 2
  • A. G. Dunaev
    • 3
  • L. I. Krotova
    • 3
  • A. V. Mironov
    • 3
  • O. A. Mironova
    • 3
  • V. K. Popov
    • 3
  • Y. -Y. Chen
    • 1
  1. 1.National University of FormosaHuveyTaiwan
  2. 2.National University of Science and TechnologyTaipeiTaiwan
  3. 3.Institute of Laser and Information TechnologiesRussian Academy of SciencesTroitskRussia

Personalised recommendations