Advertisement

Inorganic Materials: Applied Research

, Volume 8, Issue 1, pp 112–117 | Cite as

Formation and investigation of composite material silver–nitinol for medical purposes

  • E. O. Nasakina
  • A. S. Baikin
  • K. V. Sergiyenko
  • A. V. Leonov
  • M. A. Kaplan
  • A. V. Seryogin
  • S. V. Konushkin
  • N. V. Myasnikova
  • M. A. Sevostyanov
  • A. G. Kolmakov
  • S. V. Simakov
Article

Abstract

Nanoscale and microscale surface layers of silver on flat and wire NiTi and SiO2 substrates were produced by vacuum magnetron sputtering. The structure and the composition of samples were determined by SEM, Auger electron spectroscopy (AES), and X-ray diffractometry. The thickness and the structure of surface layers were affected by the sputtering distance and time.

Keywords

composite materials nanomaterials surface modification surface layer magnetron sputtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shabalovskaya, S., On the nature of the biocompatibility and medical applications of NiTi shape memory and superelastic alloys, Bio-Med. Mater. Eng., 1996, vol. 6, pp. 267–289.Google Scholar
  2. 2.
    Gyunter, V.O., Khodorenko, V.N., Yasenchuk, Yu.F., and Chekalkin, T.L., Nikelid titana. Meditsinskii material novogo pokoleniya (Titanium Nickelide. Medical Material of New Generation), Tomsk: Nauchno-Issled. Inst. Med. Mater. Implantov Pamyat’yu Formy, 2006.Google Scholar
  3. 3.
    Zabolotnyi, V.T., Belousov, O.K., Palii, N.A., Goncharenko, B.A., Armaderova, E.A., and Sevost’yanov, M.A., Materials science aspects of the production, treatment, and properties of titanium nickelide for application in endovascular surgery, Russ. Metall. (Engl. Transl.), 2011, vol. 2011, no. 5, pp. 437–448.Google Scholar
  4. 4.
    Gyunter, V.E., Itin, V.I., Monasevich, L.A., Paskal, Yu.I., and Kotenko, V.V., Effekty pamyati formy i ikh primenenie v meditsine (Shape Memory Effects and Their Application in Medicine), Monasevich, L.A., Ed., Novosibirsk: Nauka, 1992.Google Scholar
  5. 5.
    Stoeckel, D., Nitinol medical devices and implants, Minimally Invasive Ther. Allied Technol., 2000, vol. 9, pp. 81–88.CrossRefGoogle Scholar
  6. 6.
    Bose, A., Hartmann, M., and Henkes, H., A novel, self-expanding nitinol stent in medically refractory intracranial atherosclerotic stenosis: wingspan study, Stroke, 2007, vol. 38, pp. 1531–1537.CrossRefGoogle Scholar
  7. 7.
    Shabalovskaya, S.A., He Tian, Anderegg, J.W., Schryvers, D.U., Carroll, W.U., and van Humbeeck, J., The influence of surface oxides on the distribution and release of nickel from nitinol wires, Biomaterials, 2009, vol. 30, pp. 468–477.CrossRefGoogle Scholar
  8. 8.
    Hu, T., Chu, C., Xin, Y., Wu, S., Yeung, K.W.K., and Chu, P.K., Corrosion products and mechanism on NiTi shape memory alloy in physiological environment, J. Mater. Res., 2010, vol. 25, pp. 350–358.CrossRefGoogle Scholar
  9. 9.
    Huanga, H.-H., Variation in corrosion resistance of nickel-titanium wires from different manufacturers, Angle Orthodont., 2005, vol. 75, no. 4, pp. 661–665.Google Scholar
  10. 10.
    Clarke, B., Kingshott, P., Hou, X., Rochev, Y., Gorelov, A., and Carroll, W., Effect of nitinol wire surface properties on albumin adsorption, Acta Biomater., 2007, no. 3, pp. 103–111.CrossRefGoogle Scholar
  11. 11.
    Tomic, S., Rudolf, R., Bruncko, M., Anžel, I., Savic, V., and Colic, M., Response of monocyte-derived dendritic cells to rapidly solidified nickel-titanium ribbons with shape memory properties, Eur. Cells Mater., 2012, vol. 23, pp. 58–81CrossRefGoogle Scholar
  12. 12.
    Ryhanen, J., Niemi, E., Serlo, W., Niemela, E., Sandvik, P., Pernu, H., and Salo, T., Biocompatibility of nickel-titanium shape-memory metal and its corrosion behavior in human cell cultures, J. Biomed. Mater. Res., 1997, vol. 35, pp. 451–457.CrossRefGoogle Scholar
  13. 13.
    Kuz’michev, A.I., Magnetronnye raspylitel’nye sistemy. Kniga 1. Vvedenie v fiziku i tekhniku magnetronnogo raspyleniya (Magnetron Scattering Systems, Book 1: Introduction into Physics and Technique of Magnetron Scattering) Kiev: Avers, 2008.Google Scholar
  14. 14.
    Simon, G. and Toma, M., Applied Techniques for Surface Treatment of Metal Materials: Reference Book, Munich: Carl Hanser Verlag, 1985.Google Scholar
  15. 15.
    Bunshah, R.F., et al., Deposition Technologies for Films and Coating, Park Ridge, NJ: Noyes, 1982.Google Scholar
  16. 16.
    Vityaz’, P.A., Il’yushchenko, A.F., Kheifets, M.L., Chizhik, C.A., Solntsev, K.A., Kolmakov, A.G., Alymov, M.I., and Barinov, S.M., Tekhnologii konstruktsionnykh nanostrukturnykh materialov i pokrytii (Technologies of Industrial Nanomaterials and Coatings), Minsk: Belarus. Navuka, 2011.Google Scholar
  17. 17.
    Poate, J.M., Foti, G., and Jacobson, D.C., Surface Modification and Alloying by Laser, Ion and Electron Beams, New York: Plenum, 1983.CrossRefGoogle Scholar
  18. 18.
    Voronov, A.V., Sergeev, V.P., Sergeev, O.V., Neifel’d, V.V., and Paraev, Yu.N., Obtaining nanocomposite coatings on the basis of the system Ti–Al–Si–N by two magnetrons, Izv. Tomsk. Politekhn. Univ., 2009, vol. 315, pp. 147–150.Google Scholar
  19. 19.
    Kolmakov, A.G., Gerov, V.V., Baranov, E.E., Krasnobaev, N.N., and Terent’ev, V.F., Effect of magnetron coating from 12Kh18N10T steel on deformation and destruction of maragiing steel at static tension, Deform. Razrush. Mater., 2006, no. 1, pp. 21–28.Google Scholar
  20. 20.
    Kolmakov, A.G., Gerov, V.V., Baranov, E.E., Krasnobaev, N.N., and Terent’ev, V.F., Effect of magnetron coating from aluminum on mechanical properties of maraging steel, Deform. Razrush. Mater., 2005, no. 10, pp. 7–12.Google Scholar
  21. 21.
    Dorranian, D., Solati, E., Hantezadeh, M., Ghoranneviss, M., and Sari, A., Effects of low temperature on the characteristics of tantalum thin films, Vacuum, 2011, vol. 86, pp. 51–55.CrossRefGoogle Scholar
  22. 22.
    Bernoulli, D., Müller, U., Schwarzenberger, M., Hauert, R., and Spolenak, R., Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition, Thin Solid Films, 2013, vol. 548, pp. 157–161.CrossRefGoogle Scholar
  23. 23.
    Zhou, Y.M., Xiea, Z., Xiao, H.N., Hu, P.F., and He, J., Effects of deposition parameters on tantalum films deposited by direct current magnetron sputtering in Ar–O2 mixture, Appl. Surf. Sci., 2011, vol. 258, pp. 1699–1703.CrossRefGoogle Scholar
  24. 24.
    Zhou, Y.M., Xie, Z., Ma, Y.Z., Xia, F.J., and Feng, S.L., Growth and characterization of Ta/Ti bi-layer films on glass and Si (111) substrates by direct current magnetron sputtering, Appl. Surf. Sci., 2012, vol. 258, pp. 7314–7321.CrossRefGoogle Scholar
  25. 25.
    Navid, A.A., Chason, E., and Hodge, A.M., Evaluation of stress during and after sputter deposition of Cu and Ta films, Surf. Coat. Technol., 2010, vol. 205, pp. 2355–2361.CrossRefGoogle Scholar
  26. 26.
    Myers, S., Lin, J., Martins Souza, R., Sproul, W.D., and Moore, J.J., The ß [right arrow] a phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering, Surf. Coat. Technol., 2013, vol. 214, pp. 38–45.CrossRefGoogle Scholar
  27. 27.
    Cacucci, A., Loffredo, S., Potin, V., Imhoff, L., and Martin, N., Interdependence of structural and electrical properties in tantalum/tantalum oxide multilayers, Surf. Coat. Technol., 2013, vol. 227, pp. 38–41.CrossRefGoogle Scholar
  28. 28.
    Navid, A.A. and Hodge, A.M., Nanostructured alpha and beta tantalum formation—relationship between plasma parameters and microstructure, Mater. Sci. Eng. A, 2012, vol. 536, pp. 49–56.CrossRefGoogle Scholar
  29. 29.
    Navid, A.A. and Hodge, A.M., Controllable residual stresses in sputtered nanostructured alpha-tantalum, Scripta Mater., 2010, vol. 63, pp. 867–870.CrossRefGoogle Scholar
  30. 30.
    Akishin, A.I., Bondarenko, G.G., Bykov, D.V., Vasilenko, O.I., Grishin, V.K., Zhirikhin, A.N., Zabolotnyi, V.T., Ivanov, L.I., Iskhanov, B.S., Maiorov, V.S., Novikov, L.S., Simnov, V.P., Tikhonov, A.N., Cherkasov, A.S., and Shvedunov, V.I., Fizika vozdeistviya kontsentrirovannykh potokov energii na materialy. Uchebnik (Physics of Interaction of Energy Concentrated Flows with Materials: Manual) Moscow: Uchebn.-Nauch. Tsentr Dovuz. Obraz., 2004.Google Scholar
  31. 31.
    Zabolotnyi, V.T., Ionnoe peremeshivanie v tverdykh telakh (Ionic Mixing in Solids), Moscow: Mosk. Gos. Inst. Elektron. Matem., 1997.Google Scholar
  32. 32.
    Zhukov, V.V., Krivobokov, V.P., Patsevich, V.V., and Yanin, S.N., Properties of magnetron discharge at the constant current, Part 1: Mechanism of target scattering, Izv. Tomsk. Politekh. Univ., 2005, vol. 308, no. 6, pp. 69–74.Google Scholar
  33. 33.
    Pyatnitskii, I.V. and Sukhan, V.V., Analiticheskaya khimiya serebra (Analytical Chemistry of Silver), Moscow: Nauka, 1975.Google Scholar
  34. 34.
    Burkat, G.K., Serebrenie, zolochenie, palladirovanie i rodirovanie (Plating by Silver, Gold, Palladium, and Rhodium), Leningrad: Mashinostroenie, 1984.Google Scholar
  35. 35.
    Malyshev, V.M. and Rumyantsev, D.V., Serebro (Silver), Moscow: Metallurgiya, 1987.Google Scholar
  36. 36.
    Chen, Y.-H., Hsu, C.-C., and He, J.-L., Antibacterial silver coating on poly (ethylene terephthalate) fabric by using high power impulse magnetron sputtering, Surf. Coat. Technol., 2013, vol. 232, pp. 868–875.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. O. Nasakina
    • 1
  • A. S. Baikin
    • 1
  • K. V. Sergiyenko
    • 1
  • A. V. Leonov
    • 1
  • M. A. Kaplan
    • 1
  • A. V. Seryogin
    • 1
  • S. V. Konushkin
    • 1
  • N. V. Myasnikova
    • 2
  • M. A. Sevostyanov
    • 1
  • A. G. Kolmakov
    • 1
  • S. V. Simakov
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.National Research University Moscow Power Engineering InstituteMoscowRussia

Personalised recommendations