Skip to main content
Log in

Radiation-chemical synthesis of silver nanoparticles in aqueous solution of chitin derivative

  • Materials for Ensuring Human Vital Activity and Environmental Protection
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

It has been demonstrated for the first time that, in the process of gamma-induced reduction of Ag+ in aqueous solution of biodegradable carboxymethyl chitin (CMC) polyelectrolyte, a metal-polymer colloidal solution is formed, wherein silver nanoparticles have spherical shape and a size of about 1–5 nm. By using UV–Vis spectroscopy and transmission electron microscopy (TEM), the influence of CMC concentration and radiation doses on the formation of clusters and silver nanoparticles in the metal-polymer colloidal solution is observed. Colloidal solutions of silver nanoparticles in CMC exhibit a clear concentration-dependent bactericidal activity toward the strains of Gram-positive Staphilococcus aureus, as well as Gram-negative Salmonella tythimurium bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tran, Q.H., Nguyen, V.Q., and Le, A.-T., Silver nanoparticles: synthesis, properties, toxicology, applications and perspective, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2013, vol. 4, p. 033001. doi 10.1088/2043-6262/4/3/033001

    Google Scholar 

  2. Majdalawieh, A., Kanan, M.C., El-Kadri, O., and Kanan, S.M., Recent advances in gold and silver nanoparticles: synthesis and applications, J. Nanosci. Nanotechnol., 2014, vol. 14, pp. 4757–4780.

    Article  CAS  Google Scholar 

  3. Kim, S.-K., Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments, Boca Raton, FL: CRC Press, 2013.

    Book  Google Scholar 

  4. Rinaudo, M., Chitin and chitosan: properties and applications, Progr. Polym. Sci., 2006, vol. 31, pp. 603–632.

    Article  CAS  Google Scholar 

  5. Rogovina, S.Z. and Vikhoreva, G.A., Polysaccharidebased polymer blends: Methods of their production, Glycoconjugate J., 2006, vol. 23, pp. 611–618.

    Article  CAS  Google Scholar 

  6. Francesko, A. and Tzanov, T., Chitin, chitosan, and derivatives for wound healing and tissue engineering, Adv. Biochem. Eng./Biotechnol., 2011, vol. 125, pp. 1–27.

    CAS  Google Scholar 

  7. Chang, J., Liu, W., Han, B., and Liu, B., The evaluation on biological properties of carboxymethyl-chitosan and carboxymethyl-chitin, J. Ocean Univ. China, 2008, vol. 7, pp. 404–410.

    Article  CAS  Google Scholar 

  8. Jayakumar, R., Prabaharan, M., Nair, S.V., Tokura, S., Tamura, H., and Selvamurugan, N., Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications, Progr. Mater. Sci., 2010, vol. 55, pp. 675–709.

    Article  CAS  Google Scholar 

  9. Revina, A.A., Kuznetsov, M.A., and Chekmarev, A.M., Physicochemical properties of rhenium nanoparticles obtained in reverse micelles, Dokl. Chem., 2013, vol. 450, pp. 119–121.

    Article  CAS  Google Scholar 

  10. Egorova, E.M. and Revina, A.A., Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin, Colloids Surf., A, 2000, vol. 168, pp. 87–96.

    Article  CAS  Google Scholar 

  11. Shirokova, L.N., Alexandrova, V.A., Egorova, E.M., and Vihoreva, G.A., Macromolecular systems and bactericidal films based on chitin derivatives and silver nanoparticles, Appl. Biochem. Microbiol., 2009, vol. 45, pp. 380–383.

    Article  CAS  Google Scholar 

  12. Alexandrova, V.A., Shirokova, L.N., Bondarenko, G.N., and Petrosyan, A.S., Silver-carboxymethyl chitin nanocomposites, J. Polym. Sci., Part A: Polym. Phys., 2013, vol. 55, pp. 107–114.

    CAS  Google Scholar 

  13. Hasell, T., Yang, J., Wang, W., Brown, P.D., and Howdle, S.M., A facile synthetic route to aqueous dispersions of silver nanoparticles, Mater. Lett., 2007, vol. 61, pp. 4906–4910.

    Article  CAS  Google Scholar 

  14. Pal, A., Shah, S., and Dev, S., Synthesis of Au,Ag,and Au–Ag alloy nanoparticles in aqueous polymer solution, Colloids Surf., A, 2007, vol. 302, pp. 51–57.

    Article  CAS  Google Scholar 

  15. Pomogailo, A.D. and Kestelman, V.N., Metallopolymer Nanocomposites, New York: Springer-Verlag, 2005.

    Google Scholar 

  16. Zezin, A.A., Feldman, V.I., Shmakova, N.A., Valueva, S.P., Ivanchenko, V.K., and Nikanorova, N.I., The peculiarities of formation of the metal nanoparticles in irradiated polymer metal complexes, Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, vol. 265, pp. 334–338.

    Article  CAS  Google Scholar 

  17. Wongpanti, P., Sanchavanakit, N., Supaphol, P., Tokura, S., and Rujiravanit, R., Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application, Macromol. Biosci., 2005, vol. 5, pp. 1001–1012.

    Article  Google Scholar 

  18. Ershov, B.G., Short-lived metal clusters in aqueous solutions: formation, identification, and properties, Russ. Chem. Bull., 1999, vol. 48, pp. 1–15.

    Article  CAS  Google Scholar 

  19. Zhu, Y., Qian, Y., Li, X., and Zhang, M., Radiation synthesis and characterization of polyacrylamide–silver nanocomposites, Chem. Comm., 1997, vol. 12, pp. 1081–1082.

    Article  Google Scholar 

  20. Chen, P., Song, L., Liu, Y., and Fang, Y., Synthesis of silver nanoparticles by ray irradiation in acetic water solution containing chitosan, Radiat. Phys. Chem., 2007, vol. 76, pp. 1165–1168.

    Article  CAS  Google Scholar 

  21. Huang, N.M., Radiman, S., Lim, H.N., Khiew, P.S., Chiu, W.S., Lee, K.H., Syahida, A., Hashim, R., and Chia, C.H., Ray assisted synthesis of silver nanoparticles in chitosan solution and the antibacterial properties, Chem. Eng. J., 2009, vol. 155, pp. 499–507.

    Article  CAS  Google Scholar 

  22. Yoksan, R. and Chirachanchai, S., Silver nanoparticles dispersing in chitosan solution: Preparation by ray irradiation and their antimicrobial activities, Mater. Chem. Phys., 2009, vol. 115, pp. 296–302.

    Article  CAS  Google Scholar 

  23. Phu, V.D., Lang, V.T.K., Lan, N.T.K., Duy, N.N., Chau, N.D., Du, B.D., Cam, B.D., and Hien, N.Q., Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by irradiation, J. Exp. Nanosci., 2010, vol. 5, pp. 169–179.

    Article  CAS  Google Scholar 

  24. Ershov, B.G. and Henglein, A., Reduction of Ag+ on polyacrylate chains in aqueous solution, J. Phys. Chem. B, 1998, vol. 102, pp. 10663–10666.

    Article  CAS  Google Scholar 

  25. Mostafavi, M., Keghouche, N., and Delcourt, M.O., Complexation of silver clusters of a few atoms by a polyanion in aqueous solution: pH effect correlated to structural changes, Chem. Phys. Lett., 1990, vol. 169, pp. 81–84.

    Article  CAS  Google Scholar 

  26. EUCAST Definitive document. Methods for the determination of susceptibility of bacteria to antimicrobial agents, Clin. Microbiol. Infect., 1998, vol. 4, pp. 291–296.

  27. Aleksandrova, V.A. and Shirokova, L.N., RF Patent 2474471, Bull. Izobret., 2013, no. 4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Shirokova.

Additional information

Original Russian Text © L.N. Shirokova, A.A. Revina, V.A. Aleksandrova, A.A. Fenin, 2016, published in Perspektivnye Materialy, 2016, No. 1, pp. 40–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokova, L.N., Revina, A.A., Aleksandrova, V.A. et al. Radiation-chemical synthesis of silver nanoparticles in aqueous solution of chitin derivative. Inorg. Mater. Appl. Res. 7, 730–736 (2016). https://doi.org/10.1134/S2075113316050245

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316050245

Keywords

Navigation