Skip to main content
Log in

Long-acting bioactive composition based on chitosan and taxifolin

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Chitosan-based hydrogel containing antioxidant dihydroquercetin is developed. The optimal concentration of a cross-linking agent making it possible to obtain viscous fluid chitosan hydrogels capable of protractedly producing dihydroquercetin is found. During hydrogel formation and its storage, 86% of dihydroquercetin remains in the initial form, and production of no more than 14% of thermal oxidation products is observed. At the same time, the original content of the flavonoid in the hydrogel is shown to be 5 times greater than its solubility in water; the dihydroquercetin isolation from the hydrogel is 4 times slower than from a chitosan solution. Adaptogenic activity of hydrogel was demonstrated under hypobaric hypoxia conditions in vivo orally applied to experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lukyanova, L.D., Modern problems of hypoxia, Vestn. Ross. Akad. Med. Nauk, 2000, no. 9, pp. 3–12.

    Google Scholar 

  2. Ryabov, G.A., Palechnik, I.N., and Asimov, Y.M., Activated oxygen species and their role in certain pathological conditions, anesthesiology i medicina, Medicine anesthesiology and emergency medicine, 1991, no. 1, pp. 63–69.

    Google Scholar 

  3. Lukyanova, L.D., Bioenergetic hypoxia: Definition, mechanisms and methods of correction, Bull. Exper. Biol. Med., 1997, no. 9, pp. 835–843.

    Article  Google Scholar 

  4. Chesnokova, N.P., Ponukalina, E.V., Bizenkova, M.N., and Afanasyev, G.A., The possibilities of the effective use of antioxidants in experimental and clinical medicine, Uspekhi sovremenn. Estestvozn., 2006, no. 8, pp. 18–25.

    Google Scholar 

  5. Burda, S. and Oleszek, W., Antioxidant and antiradical activities of flavonoids, J. Agric. Food Chem., 2001, vol. 49, pp. 2774–2779.

    Article  CAS  Google Scholar 

  6. Rinaudo, M., Chitin and chitosan: Properties and applications, Prog. Polym. Sci., 2006, vol. 31, pp. 603–632.

    Article  CAS  Google Scholar 

  7. Dash, M., Chiellini, F., Ottenbriteb, R.M., and Chiellini, E., Chitosan–A versatile semi-synthetic polymer in biomedical applications, Progr. Polym. Sci., 2011, vol. 36, pp. 981–1014.

    Article  CAS  Google Scholar 

  8. Jayakumar, R., Prabaharan, M., Kumar, P.T.S., Nair, S.V., and Tamura, H., Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnol. Adv., 2011, vol. 29, pp. 322–337.

    Article  CAS  Google Scholar 

  9. Hoare, T.R. and Kohane, D.S., Hydrogels in drug delivery: Progress and challenges, Polymer, 2008, vol. 49, pp. 1993–2007.

    Article  CAS  Google Scholar 

  10. Teselkin, J.O., Zhambalova, B.A., Babenkova, I.V., Klebanov, G.I., and Tyukavkin, N.A., Antioxidant properties of dihydroquercetin, Biophysics, 1996, vol. 41, pp. 620–624.

    CAS  Google Scholar 

  11. Jurado, J., Alejandre-Duran, E., Alonso-Moraga, A., and Pueyo, C., Study on the mutagenic activity of 13 bioflavonoids with the Salmonella Ara test, Mutagenesis, 1991, vol. 6, pp. 289–295.

    Article  CAS  Google Scholar 

  12. Nagao, M., Morita, N., Yahagi, T., Shimizu, M., Kuroyanagi, M., Fukuoka, M., Yoshihira, K., Natori, S., Fujino, T., and Sugimura, T., Mutagenicities of 61 flavonoids and 11 related compounds, Environ. Mutagen., 1981, vol. 3, pp. 401–419.

    Article  CAS  Google Scholar 

  13. Kurth, E.F. and Chan, F.L., Dihydroquercetin as an antioxidant, J. Am. Oil Chem. Soc., 1951, vol. 28, pp. 433–436.

    Article  CAS  Google Scholar 

  14. Grigoriev, A.M., Evteev, A.V., Smyslov, A.P., Smyslov, P.A., and Tsvetkov, M.V., RF Patent 2369383, 2009.

    Google Scholar 

  15. Jayakumar, R., Prabaharan, M., Kumar, P.T.S., Nair, S.V., and Tamura, H., Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnol. Adv., 2011, vol. 29, pp. 322–337.

    Article  CAS  Google Scholar 

  16. Murach, E.I., Baranov, I.A., Erlykina, E.I., Koryagin, A.S., Mochalova, A.E., and Smirnova, L.A., Adaptogenic effects of dihydroquercetin-chitosan composition during modeling of acute hypoxia, Bull. Exper. Biol. Med., 2014, vol. 156, pp. 306–309.

    Article  CAS  Google Scholar 

  17. Bhattarai, N., Gunn, J., and Zhang, M., Chitosanbased hydrogels for controlled, localized drug delivery, Adv. Drug Delivery Rev., 2010, vol. 62, pp. 83–99.

    Article  CAS  Google Scholar 

  18. Illum, L., Chitosan and its use as a pharmaceutical excipient, Pharm. Res., 1998, vol. 15, pp. 1326–1331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Baranov.

Additional information

Original Russian Text © I.A. Baranov, D.Yu. Dzhons, A.V. Budruev, A.E. Mochalova, L.A. Smirnova, A.S. Koryagin, 2015, published in Perspektivnye Materialy, 2015, No. 3, pp. 40–47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, I.A., Dzhons, D.Y., Budruev, A.V. et al. Long-acting bioactive composition based on chitosan and taxifolin. Inorg. Mater. Appl. Res. 6, 479–484 (2015). https://doi.org/10.1134/S2075113315050020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113315050020

Keywords

Navigation