Advertisement

Inorganic Materials: Applied Research

, Volume 6, Issue 3, pp 240–248 | Cite as

Structure formation and properties of weld alloys with addition of refractory compound nanoparticles

  • G. N. Sokolov
  • I. V. Zorin
  • A. A. Artem’ev
  • V. B. Litvinenko-Ar’kov
  • Yu. N. Dubtsov
  • V. I. Lysak
  • V. O. Kharlamov
  • A. V. Samokhin
  • Yu. V. Tsvetkov
Composite Materials

Abstract

The structure and properties of Fe and Ni3Al weld metals doped with TiCN and WC nanoparticles are investigated via optical and scanning electron microscopy, X-ray spectroscopic microanalysis, and fatigue life and abrasive wear tests.

Keywords

nanoparticles titanium carbonitride tungsten monocarbide weld metal crystallization structure modification deformation wear resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saburov, V.P., Eremin, E.N., Cherepanov, A.N., and Minnekhanov, G.N., Modifitsirovanie stalei i splavov dispersnymi inokulyatorami (Steel and Alloy Modification by Disperse Inoculators), Omsk: Omsk. Gos. Tekhn. Univ., 2002.Google Scholar
  2. 2.
    Komshukov, V.P., Cherepanov, A.N., and Protopopov, E.V., Modification of metal with nanopowder inoculators in the mold of a continuous bar-casting machine: Mechanical and metallographic data, Steel in Transl., 2008, vol. 38, pp. 807–810.CrossRefGoogle Scholar
  3. 3.
    Chernyshova, T.A., Kobeleva, L.I., Kalashnikov, E.I., and Bolotova, L.K., Modification of cast aluminummatrix composite materials by refractory nanoparticles, Russ. Metall. (Metally), 2009, no. 1, pp. 70–76.Google Scholar
  4. 4.
    Anisimov, O.V., Kostikov, V.I., Lobacheva, E.V., Puzik, V.I., and Shtankin, Yu.V., Development aluminum-based metalcomposites hardened by nanoparticles of refractory compounds, Izv. VUZov, Poroshk. Metallurg. Funkts. Pokr., 2011, no. 3, pp. 33–39.Google Scholar
  5. 5.
    Milligan, J., Heard, D.W., and Brochu, M., Formation of nanostructured weldments in the Al-Si system using electrospark welding, Appl. Surf. Sci., 2010, vol. 256, pp. 4009–4016.CrossRefGoogle Scholar
  6. 6.
    Levashov, A.E., Zamulaeva, E.I., Kudryashov, A.E., Vakaev, V.P., Sviridova, T.A., and Petrzhik, M.I., Formation processes, structure, and properties of spark coatings of ArmCo iron obtained with the use of nanostructured and microstructured WC-Co electrodes, Russ. J. Non-Ferrous Metals, 2007, vol. 48, pp. 478–487.CrossRefGoogle Scholar
  7. 7.
    Wu, J.-H., Rigney, D.A., Falk, M.A., and Sanders, J.H., Tribological behavior of WC/DLC/WS, nanocomposite coatings, Surf. Coat. Technol., 2004, vol. 188–189, pp. 605–611.CrossRefGoogle Scholar
  8. 8.
    Eremin, E.N., Application of nanoparticles of refractory compounds for improving the quality of welding joints made of heat-resistant alloys, Omsk. Nauchn. Vestn., 2009, no. 3, pp. 63–67.Google Scholar
  9. 9.
    Golovin, E.D., Bataev, A.A., Cherepanov, A.N., and Bolotova, L.K., Application of nanodispersed refractory compounds during laser welding of carbon steels, Rossiiskie nanotekhnologii, 2009, vol. 2, nos. 3–4, pp. 35–57.Google Scholar
  10. 10.
    Stepanova, I.V., Panin, S.V., Durakov, V.G., and Korchagin, M.A., Modification on the structure of powder coatings on nickel and chromium-nickel bases by introducing nanoparticles of titanium diboride during electron-beam welding, Russ. J. Non-Ferrous Metals, 2013, vol. 54, pp. 112–117.CrossRefGoogle Scholar
  11. 11.
    Hou, Q.Y., Huang, Z., and Wang, J.T., Influence of nano-Al2O3 particles in the microstructure and wear resistance of the nickel-based alloy coating deposited by plasma transferred arc overlay welding, Surf. Coat. Technol., 2011, vol. 206, pp. 2806–2812.CrossRefGoogle Scholar
  12. 12.
    Reisgen, U., Stein, L., Balashov, B., and Geffers, C., Nanophase hardfaced coatings, Materialwissenschaft und Werkstofftechnik, 2009, vol. 40, pp. 618–622.CrossRefGoogle Scholar
  13. 13.
    Smirnov, A.N., Knyaz’kov, V.L., Radchenko, M.V., Knyaz’kov, K.V., Kozlov, E.V., Koneva, N.A., and Popova, N.A., Effect of Al2O3 nanodispersed particles on structural and phase state of Ni-Cr-B-Si/WC system coatings obtained by plasma-powder welding, Svarka Diagn., 2012, no. 5, pp. 32–37.Google Scholar
  14. 14.
    Sokolov, G.N., Lysak, V.I., Troshkov, A.S., Zorin, I.V., Samokhin, A.V., Alekseev, N.V., and Tsvetkov, Yu.V., Modification of weld metal by nanodispersed tungsten carbides, Fiz. Khim. Obrab. Metal., 2009, no. 6, pp. 43–47.Google Scholar
  15. 15.
    Sokolov, G.N., Troshkov, A.S., Lysak, V.I., Samokhin, A.V., Alekseev, N.V., and Tsvetkov, Yu.V., Effect of WC nanodispersed carbides and nickel on structure and properties of weld metal, Svarka Diagn., 2011, no. 3, pp. 36–38.Google Scholar
  16. 16.
    Artem’ev, A.A., Sokolov, G.N., and Lysak, V.I., Effect of microparticles of titanium diboride and nanoparticles of titanium carbonitride on the structure and properties of deposited metal, Metal Sci. Heat Treat., 2011, vol. 52, pp. 603–607.Google Scholar
  17. 17.
    Zorin, I.V., Dubtsov, Yu.N., Sokolov, G.N., Lysak, V.I., Samokhin, A.V., Alekseev, N.V., and Tsvetkov, Yu.V., Study of structure and properties of Ni3Al weld nickel aluminide alloyed by nanodispersed tungsten carbides, Perspekt. Mater., 2012, no. 2, pp. 21–27.Google Scholar
  18. 18.
    Kuznetsov, M.A., Zernin, E.A., Kolmogorov, D.E., Shlyakhovaya, G.V., and Danilov, V.I., Structure, morphology, and dispersness of metal, welded by arc welding with melting electrode in argon in the presence of nanostructured modificators, Svarka Diagn., 2012, no. 6, pp. 8–10.Google Scholar
  19. 19.
    Samokhin, A.V., Alekseev, N.V., and Tsvetkov, Yu.V., Plasma-assisted processes for manufacturing nanosized powder materials, High Energy. Chem., 2006, vol. 40, pp. 93–97.CrossRefGoogle Scholar
  20. 20.
    Tsvetkov, Yu.V., Thermal plasma in nanotechnologies, Nauka v Rossii, 2006, no. 2, pp. 4–9.Google Scholar
  21. 21.
    Anuchkin, S.N., Burtsev, V.T., and Samokhin, A.V., Interaction of refractory compound nanoparticles with a surfactant in a nickel melt: I. Heterophase interaction, Russ. Metall. (Metally), 2010, no. 11, 25–32.Google Scholar
  22. 22.
    Grigorov, I.G. and Zainulin, Yu.G., Dependence of melting temperature of nanodispersed titanium carbonitride from particle radius, Perspekt. Mater., 2007, no. 6, pp. 60–63.Google Scholar
  23. 23.
    Petrushin, N.V., Chabina, E.B., and Nazarkin, R.M., Design of refractory intermetallic alloys based on γ′-phase withhigh melting temperature. Part I, Metal Sci. Heat Treat., 2012, vol. 54, pp. 83–89.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • G. N. Sokolov
    • 1
  • I. V. Zorin
    • 1
  • A. A. Artem’ev
    • 1
  • V. B. Litvinenko-Ar’kov
    • 1
  • Yu. N. Dubtsov
    • 1
  • V. I. Lysak
    • 1
  • V. O. Kharlamov
    • 1
  • A. V. Samokhin
    • 2
  • Yu. V. Tsvetkov
    • 2
  1. 1.Volgograd State Technical UniversityVolgogradRussia
  2. 2.Institute of Metallurgy and Materials ScienceRussian Academy of ScienceMoscowRussia

Personalised recommendations