Skip to main content
Log in

Laser conoscopy of LiNbO3:Mg single crystals

  • Methods of Materials Properties Analysis
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Optical homogeneity and subtle features of the structural distortions in a series of lithium niobate (LiNbO3) single crystals of congruent composition doped with Mg2+ (0.01–5.5 mol %) are analyzed by laser conoscopy using a He-Ne laser (λ = 632.8 nm) with a power below 1 mW. Standard and distorted conoscopic patterns are observed for LiNbO3:Mg (0.01–1.5 mol %) and LiNbO3:Mg (3.0–5.5 mol %) samples, respectively. It is shown that the structural imperfection and optical anomalies reach a maximum at concentrations of about 3 mol % Mg2+ and are due to the inhomogeneity of Mg2+ incorporation into the structure at concentrations ≥3 mol %. The latter can be caused by the change in the mechanism of Mg2+ incorporation into the crystal structure at Mg2+ concentrations ≥3 mol %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon, 1969; Moscow: Nauka, 1973.

    Google Scholar 

  2. Melankholin, N.M., Metody issledovaniya opticheskikh svoistv kristallov (Methods of Study of Crystal Optical Properties), Moscow: Nauka, 1970.

    Google Scholar 

  3. Konstantinova, A.F., Grechushnikov, B.N., Bokut’, B.V., and Valyashko, E.G., Opticheskie svoistva kristallov (Optical Properties of Crystals), Minsk: Nauka Tekhnika, 1995.

    Google Scholar 

  4. Li, W., Shen, W., and Wang, Y., Measurement of optic axis direction based on interference fringe method, Semiconduct. Photon. Technol., 2006, vol. 12, no. 3, pp. 188–193.

    CAS  Google Scholar 

  5. Rudoi, K.A., Nabatov, B.V., Stroganov, V.I., Konstantinova, A.F., Alekseeva, L.V., Evdishchenko, E.A., and Kidyarov, B.I., Conoscopic figures of optically active uniaxial crystals, Crystall. Rep., 2003, vol. 48, pp. 300–304.

    Article  CAS  Google Scholar 

  6. Yamamoto, N., Mamedov, N., Shim, Y., Hidaka, C., Takizawa, T., Niwa, E., and Masumodo, K., Light figure spectroscopy of optically active anisotropic materials, J. Phys. Chem. Solids, 2003, vol. 64, pp. 1959–1962.

    Article  CAS  Google Scholar 

  7. Pikoul, O.Y., Determination of optical sign of a crystal by conoscopic method, J. Appl. Cryst., 2010, vol. 43, pp. 949–954.

    Article  Google Scholar 

  8. Dumitrascu, L., Dumitrascu, I., Dorohoi, D.O., Subbarao, E.C., Shirane, G., and Jona, F., Conoscopic method for determination of main refractive indices and thickness of a uniaxial crystal cut out parallel to its optical axis, J. Appl. Cryst., 2009, vol. 42, pp. 878–884.

    Article  CAS  Google Scholar 

  9. Romanyuk, M.O., Andriyevsky, B., Kostetsky, O., Romanyuk, M.M., and Stadnyk, V., Crystal optical method for temperature measuring, Cond. Matter Phys., 2002, vol. 5, pp. 579–586.

    Article  Google Scholar 

  10. Wang, Ankai., Gao, Ch.Y., Xu, J.Q., Zhang, H.J., and Sun, Sh.Q., Conoscopic interferometry for probing electro-optic coefficients of strontium calcium barium niobate crystal, Optics Lasers Eng., 2011, vol. 49, pp. 870–873.

    Article  Google Scholar 

  11. Shtukenberg, A.G. and Punin, Yu.O., Opticheskie anomalii v kristallakh (Optical Anomalies in Crystals), St. Petersburg: Nauka, 2004.

    Google Scholar 

  12. Pikul’, O.Yu., Alekseeva, L.V., Povkh, I.V., Stroganov, V.I., Rudoi, K.A., Tolstov, E.V., and Krishtop, V.V., Optical system features for observation conoscope figures of large sizes, Izv. Vyssh. Uchebn. Zaved. Priborostroenie, 2004, vol. 47, pp. 53–55.

    Google Scholar 

  13. Palatnikov, M.N., Biryukova, I.V., Makarova, O.V., Sidorov, N.V., Kravchenko, O.E., and Efremov, V.V., Growth of large LiNbO3:Mg crystals, Inorgan. Mater., 2013, vol. 49, pp. 288–295.

    Article  CAS  Google Scholar 

  14. Sidorov, N.V., Volk, T.R., Mavrin, B.N., and Kalinnikov, V.T., Niobat litiya: defekty, fotorefraktsiya, kolebatel’nyi spektr, polyaritony (Niobate Lithium: Defects, Photorefraction, Oscillation Spectrum, Polyaritons), Moscow: Nauka, 2003.

    Google Scholar 

  15. Kokhanchik, L.S., Palatnikov, M.N., and Shcherbina, O.B., Periodical domain structures obtained by growth of LiNbO3 crystals, doped with gadolinium, J. Surf. Invest.: X-ray, Synchrotron Neutr. Tech., 2010, vol. 4, pp. 740–745.

    Article  Google Scholar 

  16. Palatnikov, M.N., Serebryakov, Yu.A., and Kalinnikov, V.T., Growth domain structure and mechanical stresses in single crystals of lithium metaniobate, in Issledovaniya v oblasti khimii i tekhnologii mineral’nogo syr’ya Kol’skogo poluostrova: Sb. nauchnykh trudov (Studies in the Area of Chemistry and Technology of Mineral Raw Materials of the Kola Peninsula. Collect. Papers), Leningrad: Nauka, 1986.

    Google Scholar 

  17. Chernaya, T.S., Volk, T.R, Verin, I.A., and Simonov, V.I., Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality, Crystallogr. Rep., 2008, vol. 53, pp. 573–578.

    Article  CAS  Google Scholar 

  18. Iyi, N., Kitamara, K., Izumi, F., Yomanato, J.K., Hayashi, T., Asano, H., and Kimura, S., Comparative study of defects structures in lithium niobate with different composition, J. Solid State Chem., 1992, vol. 101, pp. 340–346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Pikul’.

Additional information

Original Russian Text © O.Yu. Pikul’, N.V. Sidorov, O.V. Makarova, M.N. Palatnikov, 2013, published in Perspektivnye Materialy, 2013, No. 12, pp. 72–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikul’, O.Y., Sidorov, N.V., Makarova, O.V. et al. Laser conoscopy of LiNbO3:Mg single crystals. Inorg. Mater. Appl. Res. 5, 189–197 (2014). https://doi.org/10.1134/S2075113314020166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113314020166

Keywords

Navigation