Skip to main content

Space debris and micrometeoroid impact on spacecraft elements: Experimental simulation


We study experimentally how optical, electrical, and physical properties of spacecraft surface elements (optical glasses, “metal-insulator-metal” structures, and solar arrays) change upon bombardment by high-speed particles of submicron and micron size. For particle acceleration, we use an electrodynamic accelerator.

This is a preview of subscription content, access via your institution.


  1. Semkin, N.D., Piyakov, A.V., and Pogodin, A.P., Evolution and prospects of development of devices for modeling the micrometeorites in laboratory conditions, Appl. Phys., 2008, no. 4, pp. 153–163.

    Google Scholar 

  2. Semkin, N.D., Piyakov, A.V, Voronov, K.E., Bogoyavlenskii, N.L., and Goryunov, D.V., A linear accelerator for simulating micrometeorites, Instrum. Exper. Techn., 2007, vol. 50, pp. 275–281.

    Article  Google Scholar 

  3. Kalaev, M.P. and Semkin, N.D., Mathematical simulation of cosmic device optic system degradation at meteorite flow influence, Fiz. Voln. Protsessov Radiotekh. Sist., 2010, no. 2, pp. 108–114.

    Google Scholar 

  4. Romanchenkov, V.P., Calculation of sizes of cosmic device element damages, in Modelirovanie vliyaniya faktorov antropogennogo zagryazneniya okolozemnogo kosmicheskogo prostranstva na elementy konstruktsii i sistem kosmicheskikh apparatov (Simulation of Factors of Antropogenic Contamination of Near-Earth Cosmic Space on Elements of Constructions and Cosmic Device Systems), Portnyagin, Yu.I., Ed., Moscow: Gidrometeoizdat, 1992.

    Google Scholar 

  5. Semkin, N.D., Novikov, L.S., Voronov, K.E., Bobin, D.G., Pomelnikov, R.A., and Rotov, S.V., Detector of micrometeoroid and artificial space debris particles, Space Debris, 2000, vol. 2, pp. 273–293.

    Article  Google Scholar 

  6. Shifrin, K.S., Vvedenie v optiku okeana (Introduction in Ocean Optics), Leningrad: Gidrometeoizdat, 1983.

    Google Scholar 

  7. van de Hulst, H.C., Light Scattering by Small Particles, New York: Wiley, 1957.

    Google Scholar 

  8. Semkin, N.D., Voronov, K.E., and Bogoyavlenskii, N.L., Conductivity of a steadily glowing shock-compressed channel in a film metal-insulator-metal structure, Tech. Phys., 2007, vol. 52, pp. 81–85.

    Article  CAS  Google Scholar 

  9. Semkin, N.D., Voronov, K.E., Piyakov, A.V., and Piyakov, I.V., Registration of a spase artificial and natural dust, Appl. Phys., 2009, no. 1, pp. 86–101.

    Google Scholar 

  10. Bednyakov, S.A., Gavryushin, A.V., Nadiradze, A.B., and Novikov, L.S., Shunting of solar battery elements at single shocks of solid particles, Trudy MAI, no. 1, electron journal.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. P. Kalaev.

Additional information

Original Russian Text © M.P. Kalaev, N.D. Semkin, L.S. Novikov, 2012, published in Fizika i Khimiya Obrabotki Materialov, 2012, No. 3, pp. 30–36.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalaev, M.P., Semkin, N.D. & Novikov, L.S. Space debris and micrometeoroid impact on spacecraft elements: Experimental simulation. Inorg. Mater. Appl. Res. 4, 205–210 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • electrodynamic accelerator for particles
  • micrometeoroid
  • surface degradation
  • shock flash
  • scattering indicatrix
  • spectral transmittance