Inorganic Materials: Applied Research

, Volume 4, Issue 2, pp 169–173 | Cite as

Experimental and physicomathematical simulation of the effect of an incident flow of atomic oxygen on highly filled polymer composites

  • V. I. Pavlenko
  • L. S. Novikov
  • G. G. Bondarenko
  • V. N. Chernik
  • A. I. Gaidar
  • N. I. Cherkashina
  • O. D. Edamenko
Methods of Materials Properties Analysis

Abstract

The effect of the flow of atomic oxygen (AO) on highly filled composites of a high-impact polystyrene (HIPS) and a superfine silicon-organic filler is investigated. Erosion coefficients after the treatment with AO are calculated, and the postirradiation relief of the composites is studied by the method of scanning electron microscopy (SEM). A physicomathematical simulation of erosion processes is performed on the basis of the obtained data.

Keywords

high-impact polystyrene methylpolysiloxane xerogel atomic oxygen physicomathematical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shuvalov, V.A., Tikhii, V.G., Priimak, A.I., and Gusarova, I.A., Degradation of polymer materials of sun KA battery covers at long-term influence of atomic oxygen flows, Kosmichna Nauka i Tekhnologiiya, 2005, vol. 11, no. 5/6, pp. 78–86.Google Scholar
  2. 2.
    Novikov, L.S. and Chernik, V.N., Primenenie plazmennykh uskoritelei v kosmicheskom materialovedenii. Uchebnoe posobie (Plasma Accelerator Application in Space Material Science. A Tutorial), Moscow: Universitetskaya Kniga, 2008.Google Scholar
  3. 3.
    Voronina, E.N., Novikov, L.S., Samokhina, M.S., and Chirskaya, N.P., Mathematical simulation of atomic oxygen influence on polymer composites, Trudy XII mezhvuzovskoi nauchnoi shkoly molodykh spetsialistov “Kontsentrirovannye potoki energii v kosmicheskoi tekhnike, elektronike, ekologii i meditsine” (Proc. 12th Intrainst. Sci. School of Young Specialists ‘Concentrated Energy Flows in Space Technique, Electronics, Ecology and Medicine’), Moscow: Mos. Gos. Univ., 2011.Google Scholar
  4. 4.
    Tagawa, M., Ohmae, N., Nakata, Y., Comparison of polyimide film surface properties exposed to real and simulated space environments: relevance of atomic oxygen effects to wettability in space, in Polyimides and Other High Temperature Polymers, Mittal, K.I., Ed., Tokyo, 2003, vol. 2, pp. 419–435.Google Scholar
  5. 5.
    Vernigorov, K.B., Alent’ev, A.Yu., Meshkov, I.B., Muzafarov, A.M., Voronina, E.N., Novikov, L.S., and Chernik, V.N., Use of hyperbranched polyethoxysiloxane to improve the resistance of thermoplastic polyimide coatings to atomic oxygen environment, Inorg. Mater.: Appl. Res., 2012, vol. 3, pp. 81–87.Google Scholar
  6. 6.
    Akishin, A.I., Novikov, L.S., and Chernik, V.N., Application of oxygen plasma accelerator for study of material sputtering, J. Surf. Invest.: X-ray, Synchr. Neutron Techn., 2004, No. 4, pp. 52–56.Google Scholar
  7. 7.
    ASTM E 2089-00 (2006). Standart Practics for Ground Laboratory Atomic Oxygen Interaction Evaluation of Materials for Spacecraft Applications.Google Scholar
  8. 8.
    Verker, R. and Eliaz, N., Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: the role of mechanical properties at elevated temperatures, Acta Mater., 2009, vol. 57, pp. 1112–1119.CrossRefGoogle Scholar
  9. 9.
    Gurvich, L.V., Karachevtsev, G.V., Kondrat’ev, V.N., Lebedev, Yu.A., Medvedev, V.A., Potapov, V.K., and Khodeev, Yu.S., Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu (Energies of Chemical Bond Rupture. Ionization Potentials and Affinity to Electron), Moscow: Nauka, 1974.Google Scholar
  10. 10.
    Model’ kosmosa. Vozdeistvie kosmicheskoi sredy na materialy i oborudovanie kosmicheskikh apparatov. T. 2 (Space Model. Influence of Space Media on Materials and Equipment of Spacecrafts. Vol. 2), Novikov, L.S., Ed., Moscow: Knizhnyi Dom Universitet, 2007.Google Scholar
  11. 11.
    Pasevich, O.F. and Milinchuk, V.K., A spectroscopic study of polyimide films exposed in low earth orbits, High Energy Chemistry, 2005, vol. 39, pp. 368–372.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. I. Pavlenko
    • 1
  • L. S. Novikov
    • 2
  • G. G. Bondarenko
    • 3
  • V. N. Chernik
    • 2
  • A. I. Gaidar
    • 4
  • N. I. Cherkashina
    • 1
  • O. D. Edamenko
    • 1
  1. 1.Belgorod State Technology UniversityBelgorodRussia
  2. 2.Skobel’tsyn Research Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.Moscow Institute of Electronics and MathematicsNational Research University Higher School of EconomicsMoscowRussia
  4. 4.State Scientific Institution Research Institute of Prospective Materials and TechnologiesMoscowRussia

Personalised recommendations