Skip to main content
Log in

Methods for improving the effectiveness of machining of titanium and its alloys

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The paper presents a generalization of methods for improving the effectiveness of the cutability of titanium alloys. The methods can be conventionally divided into the following three groups: metallurgical, physicometallurgical, and mechanical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Il’in, A.A., Kolachev, B.A., and Pol’kin, I.S., Titanovye splavy. Sostav, struktura, svoistva (Titanium Alloys. Composition, Structure, Properties), Moscow: VILS-MATI, 2009.

    Google Scholar 

  2. Krivoukhov, V.A. and Chubarov, A.V., Obrabotka rezaniem titanovykh splavov (Cutting Treatment of Titanium Alloys), Moscow: Mashinostroenie, 1970.

    Google Scholar 

  3. Chubarov, A.D. and Novikov, N.N., Peculiarities of Surface Layer Deformation of Titanium and Refractory Alloys at Cutting Treatment, Vestnik Mash., 1958, no. 9, pp. 51–53.

  4. Chubarov, A.D. and Novikov, N.N., Deformation and Temperature Factor Role in Titanium Alloy Cutting Process, Vestnik Mash., 1959, no. 9, p. 82.

  5. Chubarov, A.D., Effect of Titanium Alloy Properties and Structure on Treatability of Them by Cutting, Candidate Sci. (Eng.) Dissertation, Moscow, Moscow Aviation Institute, 1962.

    Google Scholar 

  6. Zhuchkov, N.S., Bespakhotnyi, P.D., Chubarov, A.D., et al., Povyshenie effektivnosti obrabotki rezaniem zagotovok iz titanovykh splavov (Increasing of Effectiveness of Cutting Treatment of Titanium Alloy Workpieces), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  7. Romanov, K.F., Vysokoproizvoditel’naya mekhanicheskaya obrabotka titanovykh splavov (High-Performance Mechanical Treatment of Titanium Alloys), Moscow: MDNTP, 1958.

    Google Scholar 

  8. Romanov, K.F., Theory and Practice of Titanium Alloy Mechanical Treatment, in Metallurgiya i metallovedenie (Metallurgy and Metal Science), Moscow: AN SSSR, 1959, pp. 311–383.

    Google Scholar 

  9. Reznikov, N.I., Zharkov, I.G., Zaitsev, V.M., et al., Proizvoditel’naya obrabotka nerzhaveyushchikh i zharoprochnykh materialov (Efficient Treatment of Corrosion-Resistant and Refractory Materials), Moscow: Mashgiz, 1960.

    Google Scholar 

  10. Danielyan, A.M., Bobrik, P.I., Gurevich, Ya.L., et al., Obrabotka rezaniem zharoprochnykh stalei, splavov i tugoplavkikh metallov (Cutting Treatment of Refractory Steels, Alloys and Refractory Metals), Moscow: Mashinostroenie, 1965.

    Google Scholar 

  11. Gurevich, Ya.L., Gorokhov, M.V., and Zakharov, V.I., Rezhimy rezaniya trudnoobrabatyvaemykh materialov. Spravochnik (Cutting Regimes of Hard-Processing Materials. A Handbook), Moscow: Mashinostroenie, 1976.

    Google Scholar 

  12. Sadayuki, N., Free-Machining Pure Titanium and Titanium Alloys, Kinzoku (Metals and Technology), 1988, vol. 58, no. 2, pp. 17–22.

    Google Scholar 

  13. Sadayuki, N., Development of Free-Machining Pure Titanium and Free-Machining Titanium Alloys, Denki-Seiko (Electric Furnace Steel), 1988, vol. 59, no. 2, pp. 79–86.

    Article  Google Scholar 

  14. Sadayuki, N., Development of Free-Machining Titanium Alloy, Tetsu to khagane (J. Iron Steel Inst. Jpn.), 1987, vol. 73, no. 5, p. 711.

    Google Scholar 

  15. Siemers, C., Báker, M., Jencus, P., and Rósler, J., Entwicklung, Eigenschaften und Anwendungen von Automatentitan: So verbessert Lanthan die Titan-Zerspanbarkeit, WB Werkstatt und Betrieb, 2006, vol. 139, no. 10, pp. 64–67.

    Google Scholar 

  16. Kraus, J., Hard Nuts to Crack, IMHE: Inf. mag.-herramienta equipos y acces, 2005, nos. 312–313, pp. 558–559.

  17. Siemers, C., Báker, M., and Rósler, J., The Free Machining Titanium Alloy Ti6Al4V0.9La, Rare Metal Materials and Engineering, 2006, vol. 35, pp. 320–323.

    CAS  Google Scholar 

  18. Kolachev, B.A., Egorova, Yu.B., Talalaev, V.D., and Kravchenko, A.N., General Regularities of Hydrogen Effect of Titanium Alloy Cutting Treatability, Izv. Ross. Akad. Nauk, Met., 1995, no. 6, pp. 119–125.

  19. Egorova, Yu.B., Il’in, A.A., and Levochkin, A.A., Mechanical-Hydrogen Treatment as Element of Hydrogen Technology of Detail Production from Titanium Alloys, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2002, no. 3, pp. 42–47.

  20. Petrukha, P.G., Bespakhotnyi, P.D., Brushtein, B.E., et al., Rezanie trudnoobrabatyvaemykh materialov (Cutting of Hard-Machining Materials), Moscow: Mashinostroenie, 1972.

    Google Scholar 

  21. Egorova, Yu.B., Mamonov, I.M., and Davydenko, L.V., Study of Correlation Connections between Mechanical Properties and Cutting Treatability of VT23 Alloy, Trudy MATI, 2001, pp. 123–128.

  22. Egorova, Yu.B., Zubkov, N.S., Davydenko, L.V., and Afanas’eva, L.E., Optimization of Mechanical Treatment of Titanium Alloys, Vestnik Tver. Gos. Univ., 2004, pp. 28–32.

  23. Sozinov, A.I. and Stroshkov, A.N., Povyshenie effektivnosti chernovoi obrabotki zagotovok iz titanovykh splavov (Increase of Efficiency of Rough Treatment of Workpieces from Titanium Alloys), Moscow: Metallurgiya, 1990.

    Google Scholar 

  24. Stroshkov, A.N., Tesler, Sh.L., Shabashov, S.P., and Elinson, D.S., Obrabotka rezaniem trudnoobrabatyvaemykh materialov s nagrevom (Cutting Treatment of Hard-Machining Materials with Heating), Moscow: Mashinostroenie, 1977.

    Google Scholar 

  25. Vivdenko, Yu.N., Tekhnologicheskie sistemy proizvodstva naukoemkoi tekhniki (Technological Systems of Science Intensive Technique Production), Moscow: Mashinostroenie, 2006.

    Google Scholar 

  26. Chambers, A.R., Hot-Machining-A New Concept for the Difficult to Machine Materials, Bull. Cercle Etud. Metaux, 1980, vol. 14, no. 11, p. 17.

    Google Scholar 

  27. Lopez de Lacalle, L.N., Lamikiz, A., and Grijalba, D., Fresado asistido por plasma de superaleaciones, IMHE: Inf. mag. herr., eq. acces, 2004, no. 304, p. 82.

  28. Zhuchkov, N.S., Heat Effects in the Titanium Alloy Cutting Process, Trudy Mos. Av. Inst., 1977, no. 402, pp. 30–35.

  29. Baranchikov, V.I., Zharinov, A.V., Yudin, N.D., and Sadykhov, A.I., Progressivnye rezhushchie instrumenty i rezhimy rezaniya: Spravochnik (Progressive Cutting Tools and Cutting Regimes. A Handbook), Moscow: Mashinostroenie, 1990.

    Google Scholar 

  30. Baranchikov, V.I., Obrabotka spetsial’nykh materialov v mashinostroenii: Spravochnik (Treatment of Special Materials in Mechanical Engineering. A Handbook), Moscow: Mashinostroenie, 2002.

    Google Scholar 

  31. Kiryushin, D.E. and Nasad, T.G., Cutting Treatment of Titanium Alloys,in Avtomatizatsiya i upravlenie v mashinostroenii u priborostroenii (Automatization and Control in Mechanical Engineering and Instrumentation Technology), Saratov: Sar. Gos. Tech. Univ., 2005, pp. 105–108.

    Google Scholar 

  32. Baranchikov, V.I., et al., Spravochnik konstruktorainstrumental’shchika (Handbook of Constructor-Tool-Maker), Moscow: Mashinostroenie, 2006.

    Google Scholar 

  33. Webzell, S., Analysis of Effectiveness of Cutting Tool Coatings at Titanium Alloy, Nickel Alloy and Composite Treatment, Metalworking Production, 2005, vol. 149, no. 5, pp. 24–28.

    Google Scholar 

  34. Poduraev, V.N., Obrabotka rezaniem trudnoobrabatvaemykh materialov (Cutting Treatment of Hard-Machining Materials), Moscow: Vysshaya Shkola, 1974.

    Google Scholar 

  35. Bobrov, V.F., Osnovy teorii reznaiya metallov (Foundations of Metal Cutting Theory), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  36. Silin, S.S., Methodology of Cutting Regime Calculation according to Efficiency and Quality of Processed Details, in Raschet rezhimov na osnove obshchikh zakononernostei rezaniya (Regime Calculation on the Base of General Cutting Regularities), Yaroslavl: Yarosl. Polit. Inst., 1982.

    Google Scholar 

  37. Beletskii, D.V., Multicriterion Optimization of Sharpening Process on the Base of Generalization of Theoretic and Experimental Studies by Similarity Theory Methods, Candidate Sci. (Eng.) Dissertation, Rybinsk: RGATA, 2000.

    Google Scholar 

  38. Makarov, A.D., Optimizatsiya protsessov rezaniya (Cutting Process Optimization), Moscow: Mashinostroenie, 1976.

    Google Scholar 

  39. Maslyakov D.V. Plastic Deformation Resistance Determination in the Zone of Chip Formation Taking into Account the Joint Effect of Deformation Conditions and Peculiarities of Phase-Crystalline Material Structure, Candidate Sci. (Eng.) Dissertation, Rybinsk: RGATA, 2002.

    Google Scholar 

  40. Silin, S.S., Metod podobiya pri rezanii metallov (Similarity Method at Metal Cutting), Moscow: Mashinostroenie, 1979.

    Google Scholar 

  41. Shifrin, A.Sh. and Reznitskii, L.M., Obrabotka rezaniem korrozionnostoikikh, zharoprochnykh i titanovykh splavov i stalei (Cutting Treatment of Corrosion-Resistant, Refractory and Titanium Alloys and Steels), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  42. Glazunov, S.G., Vazhenin, S.F., Zyukov-Batyrev, G.D., and Ratner, Ya.L., Primenenie titana v narodnom khozyaistve (Using of Titanium in National Economy), Kiev: Tekhnika, 1975.

    Google Scholar 

  43. Sadygov, T.I., et al., Cutting Speed and Slice Section Element Effect on Wear Intensity at Sharpening of VT3-1 Titanium Alloy, in Optimizatsiya protsessov rezaniya metallov (Optimization of Metal Cutting Processes), Ufa: UAI, 1984, pp. 92–93.

    Google Scholar 

  44. Mukhin, V.S., et al., Prognosis of Treatability Criteria at Milling Taking into Account Physical and Mechanical Properties of Titanium Alloys, in Optimizatsiya protsessov rezaniya zharoprochnykh i osobozharoprochnykh materialov (Optimization of Refractory and Special Refractory Material Cutting Processes), Ufa: UAI, 1983, pp. 33–35.

    Google Scholar 

  45. Gordeev, V.Yu., Smyslov, A.M., and Kulakov, G.A., Effect of Thermomagnetic Treatment of Titanium Alloys on Their Treatability to Cutting, Aviats. Promyshl., 1988, no. 2, pp. 43–44.

  46. Belousov, A.I., Improving of Refractory and Titanium Alloy Treatability by Choice of Rational Mark of Tool Material on the Base of Cyclic Thermal Hardness Criterion, in Issledovanie obrabatyvaemosti zharoprochnykh i titanovykh splavov (Study of Refractory and Titanium Alloy Treatability), Kuibyshev, 1976, no. 3, pp. 62–67.

  47. Makarov, V.F., Semikalennykh, V.V., and Chigodaev, N.E., Intensification of Blade and Abrasive Treatment of Hard-Machining Materials on the Base of Physical Optimization of Cutting Processes, Instr. Tekhnol., 2004, nos. 17–18, pp. 129–135.

  48. Makarov, A.D., Pravednikov, I.S., Kasimov, L.N., and Samigullin, R.Z., USSR Inventor’s Certificate no. 766746, 1980.

  49. Mukhin, V.S., Smyslov, A.M., and Kuznetsov, V.A., Treatability Estimation of Titanium Alloys according to Their Plastic Characteristics, Stanki Instr., 1976, no. 6, p. 30.

  50. Kishurov, V.M. and Smyslov, A.M., Experimental Calculation Determination of Cutting Regimes at Sharpening of VT9 Titanium Alloy, in Voprosy optimizatsii rezaniya metallov (Questions of Metal Cutting Optimization), Ufa, 1976, no. 1, pp. 9–13.

  51. Kishurov, V.M. and Smyslov, A.M., Study of VT22 Titanium Alloy Treatability by Cutting, in Fizicheskie protsessy pri rezanii metallov (Physical Processes at Metal Cutting), Volgograd, 1985, pp. 72–76.

  52. Rajurkar, K.P. and Wang, Z.Y., Beyond Cool, Cutt. Tool Eng., 1996, vol. 48, pp. 52–58.

    Google Scholar 

  53. Zlatin, N., The Coolest Machining Around, MAN: Mod. Appl. News, 2007, vol. 41, no. 8, pp. 30–31.

    Google Scholar 

  54. Wang, Z.Y., Cutting Tools on Ice, Curr. Tool Eng., 2002, vol. 54, no. 9, p. 12.

    CAS  Google Scholar 

  55. Latyshev, V.N. and Naumov, A.G., Experience of Application of Lubricating and Cooling Technological Means at Cutting of Hard-Machining Materials, in Fizika, khimiya i mekhanika tribosistem. Mezhvuz. sb. nauchn. trudov (Physics, Chemistry and Mechanics of Tribosystems. Coll. Papers), Ivanovo: IGU, 2005, no. 4, pp. 34–42.

    Google Scholar 

  56. Information and Analytical Site according to Foreign Press Materials ‘Machine Tools, Contemporary Technologies and Tool for Metal Treatment’. http://www.stankoinform.ru

  57. Krymov V.V., Developments and Embedding of Highly Productive Processes, Tool and Equipment for Cutting Treatment of Details from Hard-Machining Materials (with Regard to Gas-Turbine Engine Production), Doctoral (Eng.) Dissertation, Moscow: Salyut, 1999.

    Google Scholar 

  58. Sakurai, K., Adachi, K., and Ogawa, K., Low Frequency Vibratory Drilling of Ti-6Al-4V Alloy, Keikinzoku (J. Jap. Inst. Light Metals), 1992, vol. 42, pp. 633–637.

    Article  Google Scholar 

  59. Brzhozovskii, B.M., Berkenev, N.V., Zakharov, O.V., and Trofimov, D.V., Fizicheskie osnovy, tekhnologicheskie protsessy i oborudovanie ul’trazvukovoi obrabotki materialov (Physical Foundations, Technological Processes and Equipment for Material Ultrasonic Treatment), Saratov: Sar. Gos. Tekh. Univ., 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Egorova.

Additional information

Original Russian Text © Yu.B. Egorova, S.V. Skvortsova, R.A. Davydenko, N.G. Mitropol’skaya, 2012, published in Materialovedenie, 2012, No. 7, pp. 8–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorova, Y.B., Skvortsova, S.V., Davydenko, R.A. et al. Methods for improving the effectiveness of machining of titanium and its alloys. Inorg. Mater. Appl. Res. 4, 46–51 (2013). https://doi.org/10.1134/S2075113313010036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113313010036

Keywords

Navigation