Skip to main content
Log in

Spectral analysis of thermowave oscillations in layered media

  • Methods of Materials Properties Analysis
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A method based on the spectral analysis of thermowave oscillations formed under the effect of radiation of lasers operated in a periodic pulsed mode is developed for investigating the state of the interface of multilayered systems. The method is based on high sensitivity of the shape of the oscillating component of the pyrometric signal to adhesion characteristics of the phase interface. The shape of the signal is quantitatively estimated using the correlation coefficient (for a film-interface system) and the transfer function (for multilayered specimens).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khoking, M., Vasantasri, V., and Sidki, P., Metalliheskie i keramicheskie pokrytiya. Poluchenie, svoistva i primenenie (Metallic and Ceramic Coatings. Production, Properties and Application), Moscow: Mir, 2000.

    Google Scholar 

  2. Handbook of Thin Film Technology, Maissel, L. and Glang, R., Eds., New York: McGraw Hill, 1970.

    Google Scholar 

  3. Chen, G. and Neagu, M., Thermal Conductivity and Heat Transfer in Superlattices, Appl. Phys. Lett., 1997, vol. 71, p. 2761.

    Article  CAS  Google Scholar 

  4. Gonzalez, E.J., Bonevich, J.E., Stafford, G.R., et al., Thermal Transport through Thin Films: Mirage Technique Measurements on Aluminum/Titanium Multilayers, J. Mater. Res., 2000, vol. 15, no. 3, pp. 764–771.

    Article  CAS  Google Scholar 

  5. Miloevi, N.D., Raynaud, M., and Magli, K.D., Simultaneous Estimation of the Thermal Diffusivity and Thermal Contact Resistance of Thin Solid Films and Coatings Using the Two-Dimensional Flash Method, Int. J. Thermophys., 2003, vol. 24, no. 3, pp. 799–819.

    Article  Google Scholar 

  6. Clemens, B.M., Eesley, G.L., and Paddock, C.A., Time-Resolved Thermal Transport in Compositionally Modulated Metal Films, Phys. Rev., B: Condens. Matter, 1988, vol. 37, no. 3, pp. 1085–1096.

    Article  CAS  Google Scholar 

  7. Franks, L.E., Signal Theory, New York: Prentice-Hall, 1969.

    Google Scholar 

  8. Marple, S.L., Digital Spectral Analysis with Applications, New York: Prentice Hall-Englewood Cliffs, 1987.

    Google Scholar 

  9. Zharov, V.P. and Letokhov, V.S., Lazernaya optikoakusticheskaya spektroskopiya (Laser Optical-Acoustical Spectroscopy), Moscow: Nauka, 1984.

    Google Scholar 

  10. Yakunkin, M.M., Quasi-Stationary Thermal Regime Arising at Periodical Pulse Heating of Cylindrical Solids, Inzh.-Fiz. Zh., 1995, vol. 68, no. 4, pp. 998–1004.

    Google Scholar 

  11. Bondarenko, G.G. and Yakunkin, M.M., Spectral Characteristics of the Thermal Properties of Multilayer Metallic Materials, Russian Metall. Metally, 2010, no. 7, pp. 606–611.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Bondarenko.

Additional information

Original Russian Text © G.G. Bondarenko, M.A. Kokin, D.S. Pyatykh, M.M. Yakunkin, 2011, published in Perspektivnye Materialy, 2011, No. 5, pp. 91–95.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarenko, G.G., Kokin, M.A., Pyatykh, D.S. et al. Spectral analysis of thermowave oscillations in layered media. Inorg. Mater. Appl. Res. 3, 179–182 (2012). https://doi.org/10.1134/S2075113312020050

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113312020050

Keywords

Navigation