Skip to main content
Log in

Ion-implanted nanodimensional intermetallic phases

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Fundamental and technological aspects of using nanointermetallic compounds for the ion-implanted layers as the strengthening phases are studied. The theoretical and experimental data available at present are analyzed, and high properties of nanodimensional intermetallic compounds are projected. The results of the experimental microstructure and phase composition of the surface ion-implanted nickel and tungsten layers formed under conditions of a high-intensity implantation of aluminum and titanium ions are presented. It is shown that the ion implantation of metal ions makes it possible to create the ultrafine intermetallic phases A3B and AB (A = Ni, Ti; B = Al, Ti) along with solid solutions of a depth-varying composition in 3000-nm-thick surface layers. The general patterns of formation of the nanodimensional intermetallic phases in the metal matrices are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hocking, M.G., Vasantasree, V., and Sidky, P.S., Metallic and Ceramic Coatings, Reading MA: Wesley Longman, 1989; Moscow: Mir, 2000.

    Google Scholar 

  2. Komarov, F.F. and Novikov, A.P., New Methods of Ion-Beam Treatment of Semi-Conductor Crystals, in Itogi nauki i tekhniki. Ser. Puchki Zaryzhennykh Chastits i Tverdoe Telo. Fizicheskie osnovy lazernoi i puchkovoi tekhnologii (Summary of Science and Engineering. Ser. Charge Particles Beams and a Solid. Physical Foundations of Laser and Beam Technology), Moscow: VIN-ITI, 1984, vol. 5, pp. 113–162.

    Google Scholar 

  3. Komarov, F.F., Novikov, A.P., Solov’ev, V.S., and Shiryaev, S.Yu., Defekty structury v ionno-implantirovannom kremnii (Structure Defects in Ion-Implanted Silicon), Minsk: Izd-vo Minskogo universiteta, 1990.

    Google Scholar 

  4. Domkus, M. and Pranyavichyus, L., Mekhanicheskie napryazheniya v implantirovannykh tverdykh tela (Mechanical Stresses in Implanted Solids), Vilnius: Mokslas, 1990.

    Google Scholar 

  5. Komarov, S.S., Ionnaya implantatsiya v metally (Ionic Implantation into Metals), Moscow: Metallurgiya, 1990.

    Google Scholar 

  6. Bykovskii, Yu.A., Nevolin, V.N., and Fominskii, V.Yu., Ionnaya i lazernaya implantatsiya metallicheskikh materialov (Ionic and Laser Implantation of Metallic Materials), Moscow: Energoatomoizdat, 1991.

    Google Scholar 

  7. Byeli, A.V., Makushok, E.M., and Pobol’, I.L., Poverkhnostnaya uprochnyayushchaya obrabotka s primeneniem kontsentrirovannykh potokov energii (Surface Hardening Treatment by Using the Concentrated Energy Fluxes), Minsk: Nauka i tekhnika, 1990.

    Google Scholar 

  8. Guseva, M.I. and Martynenko, Yu.V., Plasma Particles Interaction with the Surface, in Itogi nauki i tekhniki. Ser. Fizika plazmy (Summary of Science and Engineering. Ser. Plasma Physics), Shafranov, V.D., Ed., Moscow: VINITI, 1990, vol. 11, pp. 150–190.

    Google Scholar 

  9. Akkermen, A.F., Modelirovanie traektorii zaryazhennykh chastits v veshchetve (Simulation of Charged Particles in the Matter), Moscow: Energoatomoizdat, 1991.

    Google Scholar 

  10. Nastasi, M. and Mayer, J.W., Thermodynamics and Kinetics of Phase Transformations Induced by Ion Irradiation, North-Holland, 1991.

  11. Pletnev, V.V., Modern State of the Theory of Physical Spattering of Unaligned Materials, in Itogi nauki i tekhniki. Ser. Raspylenie (Summary of Science and Engineering. Ser. Sputtering), Martynenko, Yu.V., Ed., Moscow: VINITI, 1991, vol. 5, pp. 4–62.

    Google Scholar 

  12. Kuchinskii, V.V., Sputtering and Surface Composition Variation in Multi-Component Materials under Ion Bombardment, in Itogi nauki i tekhniki. Ser. Raspylenie (Summary of Science and Engineering. Ser. Sputtering), Martynenko, Yu.V., Ed., Moscow: VINITI, 1991, vol. 5, pp. 63–117.

    Google Scholar 

  13. Begrambekov, L.B., Surface Erosion and Transformation under Ion Bombardment, in Itogi nauki i tekhniki. Ser. Puchki zaryazhennykh chastits i tverdoe telo. Raspylenie (Summary of Science and Engineering. Ser. Charged Particles Beams and a Solid Sputtering), Martynenko, Yu.V., Ed., Moscow: VINITI, 1993, vol. 7, pp. 4–53.

    Google Scholar 

  14. Komarov, F.F. and Novikov, A.P., Ion-Beam Mixing under Metal Irradiation, in Itogi nauki i tekhniki. Ser. Puchki zaryazhennykh chastits i tverdoe telo. Raspylenie (Summary of Science and Engineering. Ser. Charged Particles Beams and a Solid. Sputtering), Martynenko, Yu.V., Ed., Moscow: VINITI, 1993, vol. 7, pp. 54–81.

    Google Scholar 

  15. Radzhabov, T.D., Iskanderova, Z.A., Lifanova, L.F., and Kamardin, A.I., Modifikatsiya svoistv poverkhnosti materialov i pokrytii ionnym oblucheniem (Properties Modification of Materials Surface and Coatings by Ion Radiation), Tashkent: Fan, 1993.

    Google Scholar 

  16. Abdrashitov, V.G. and Ryzhov, V.V., Izv. Vyssh. Uchebn. Zaved. Ser. Fiz., 1994, no. 5, pp. 8–22.

  17. Komarov, F.F., Izv. Vyssh. Uchebn. Zaved. Ser. Fiz., 1994, no. 5, pp. 23–40.

  18. Armour, D.G., Nucl. Instr. Meth. B, 1994, vol. 89, pp. 325–331.

    Article  CAS  Google Scholar 

  19. Interaction of Charged Particles with Solids and Surfaces, Gras-Marti, A., Urbassek, H.M., Arista, N.R., and Flores, F., Eds., New York: Plenum Press, 1991; Moscow: Vysshaya shkola, 1994.

    Google Scholar 

  20. Pleshivtsev, N.V. and Krasikov, E.A., Metals, Alloys and Steels Protection against Corrosion by Ion Bombardment, Metally, 1995, no. 4, pp. 98–129.

  21. Eckstein, W., Computer Simulation of Ion Solid Interaction, Berlin, Heidelberg: Springer,1991; Moscow: Mir, 1995.

    Google Scholar 

  22. Nastasi, M., Mayer, J.W., and Hirvonen, J.K., Ion-Solid Interactions: Fundamentals and Applications, Cambridge: Univ. Press, 1996.

    Book  Google Scholar 

  23. Pleshivtsev, N.V. and Bazhin, A.I., Fizika vozdeistviya ionnykh puchkov na materialy (Physics of Ion Beam Impact to the Materials), Moscow: Vuzovskaya kniga, 1998.

    Google Scholar 

  24. Ovchinnikov, V.V., Messbauerovskie metody analiza atomnoi i magnitnoi struktury splavov (Mossbauer Methods for Analyzing the Atomic and Magnetic Structure of Alloys), Moscow: Fizmatlit, 2002.

    Google Scholar 

  25. Gribkov, V.A., Grigor’ev, F.I., Kalin, B.A., and Yakushin, V.L., Perspektivnye radiatsionno-puchkovye tekhnologii obrabotki materialov (Perspective Radiation-Beam Technologies of Material Treatment), Moscow: Izd. dom Kruglyi god, 2001.

    Google Scholar 

  26. Bryukov, V.V., Povyshenie stoikosti instrumenta metodom ionnoi implantatsi (Increasing of Tools Resistance by Ion Implantation), Tomsk: NTL, 2003.

    Google Scholar 

  27. Ghaly Mai, Nordkund Kai and Averback, R.S., Phil. Mag. A, 1999, vol. 79, no. 4, pp. 795–820.

    CAS  Google Scholar 

  28. Kurzina, I.A., Kozlov, E.V., Sharkeev, Yu.P., et al., Nanokristallicheskie intermetallidnye i nitridnye struktury, formiruyushchiesya pri ionno-plazmennom vozdeistvii (Nanocrystal Intermetallic and Nitride Structures Formed under Ion-Plasma Action), Tomsk: NTL, 2008.

    Google Scholar 

  29. Didenko, A.N., Sharkeev, Yu.P., Kozlov, E.V., and Ryabchikov, A.I., Effekty dal’nodeistviya v ionnoimplantirovannykh metallicheskikh materialakh (Effects of Long-Range Action in Ion-Implanted Metallic Materials), Tomsk: NTL, 2004.

    Google Scholar 

  30. Andrievskii, R.A., Ros. Khim. Zh., 2002, vol. 46, no. 5, pp. 50–56.

    CAS  Google Scholar 

  31. Andrievskii, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanostructural Materials), Moscow: Akademiya, 2005.

    Google Scholar 

  32. Buchacheko, A.L., Usp. Khim., 2003, vol. 72, no. 5, pp. 419–437.

    Google Scholar 

  33. Golovin, Yu.I., Vvedenie v nanotekhnologiyu (Introduction into Nanotechnology), Moscow: Mashinostroenie-1, 2003.

    Google Scholar 

  34. Gusov, A.I. and Rempel’, A.A., Nanokristallicheskie materialy (Nanocrystalline Materials), Moscow: Fizmatlit, 2000.

    Google Scholar 

  35. Lakhno, V.D., Klastery v fizike, khimii, biologii (Clusters in Physics, Chemistry and Biology), Izhevsk: NITs “Regulyarnaya i khaoticheskaya dinamika”, 2001.

    Google Scholar 

  36. Nanotechnology Research Directions. Vision for the Nanotechnology in the Next Decades, Roko, M.C., Williams, R.S., and Alivisatos, P., Eds., Dordrecht: Kluwer Acad. Publ., 2001; Moscow: Mir, 2002.

    Google Scholar 

  37. Tjong, S.C. and Chen, H., Mater. Sci. Eng. R, 2004, vol. 45, pp. 1–88.

    Article  Google Scholar 

  38. Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow: MGU, 2003.

    Google Scholar 

  39. Matveeva, N.A. and Kozlov, E.V., Uporyadochennye fazy v metallicheskikh materialakh (Aligned Phases in Metallic Materials), Moscow: Nauka, 1989.

    Google Scholar 

  40. Grinberg, B.A. and Ivanov, M.A., Intermetallidy Ni 3 Al i TiAl: mikrostruktura, deformatsionnoe povedenie (Ni3Al and TiAl Intermetallic Compounds: Microstructure, Deformation Behavior), Yekaterinburg: UrO RAN, 2002.

    Google Scholar 

  41. Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials, Burhanetti, A.S., Ed., Michigan: Nova Publ., 2006.

    Google Scholar 

  42. Kozlov, E.V., Kurzina, I.A., and Sharkeev, Yu.P., Proc. 8th Conf. on Modification of Materials with Particle Beams and Plasma Flows (8th CMM), Tomsk, 2006, pp. 517–519.

  43. Kozlov, E.V., Sharkeev, Yu.P., Fortuna, S.V., et al., Poverkhn. Rentgen., Sinkhrotron. Neitron. Issl., 2003, no. 7, pp. 31–35.

  44. Ohnuma, I., Fujita, Y., Mitsui, H., et al., Acta Metallurg. Inc., 2000, vol. 48, pp. 3113–3123.

    CAS  Google Scholar 

  45. Faizrakhmanov, I.A., Bazarov, V.V., and Khaibulin, I.B., Poverkhnost. Rentgen., Sinkhrotron. Neitron. Issl., 2001, no. 6, pp. 95–98.

  46. Cordts, B., Munir, A., and Potter, D.I., Nucl. Instr. Meth. Phys. Res., 1983, vols. 209-210, pp. 873–879.

    Article  CAS  Google Scholar 

  47. Wyser, A., Shäublin, R., and Gotthardt, R., Nucl. Instr. Meth. B, 1996, vol. 107, nos. 1–4, pp. 353–359.

    Google Scholar 

  48. Gao, K.Y. and Liu, B.X., Nucl. Instr. Meth. B, 1997, vol. 132, no. 1, pp. 68–72.

    Article  CAS  Google Scholar 

  49. Wieser, E., Richter, E., Groetzchel, R., et al., Surf. Coat. Tech., 1998, vols. 103–104, pp. 353–359.

    Article  Google Scholar 

  50. Klopotov, A.A., Dement’eva, M.G., Dolidchik, A.I., et al., Fundament. Probl. Sovr. Materialoved., 2006, no. 1, pp. 112–120.

  51. Kurzina, I.A., Bozhko, I.A., Kalashnikov, M.P., et al., Izv. Tomsk. Politekh. Un-ta, 2004, no. 3, pp. 30–35.

  52. Kurzina, I.A., Bozhko, I.A., Kalashnikov, M.P., et al., Metallofiz. Noveish. Tekhnol., 2004, vol. 26, no. 12, pp. 1645–1660.

    CAS  Google Scholar 

  53. Sanchez, F.H., Namavar, F., Budnik, J.I.,et al., Mater. Sci. Eng., 1987, vol. 90, pp. 149–159.

    Article  CAS  Google Scholar 

  54. Knight, S.T., Evans, P.J., Samandi, M., Nucl. Instr. Meth. Phys. Res. B, 1996, vol. 119, no. 4, p. 501.

    Article  CAS  Google Scholar 

  55. Ji, C., Zhang, T., Zhang, H., et al., Rad. Eff. Defect Solids, 1994, vol. 129, p. 161.

    Article  CAS  Google Scholar 

  56. Tsiganov, I., Wieser, E., Matz, W., et al., Thin Solid Films, 2000, vol. 376, pp. 188–197.

    Article  Google Scholar 

  57. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (State Diagrams of Binary Metal Systems: Hand book), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1999, vol. 33, book 1.

    Google Scholar 

  58. Kozlov, E.V., Kurzina, I.A., Bozhko, I.A., et al., Izv. Akad. Nauk, Ser. Fiz., 2007, vol. 71, no. 21, pp. 198–201 [Bull. Rus. Acad. Sci. Phys. (Engl. Transl.), 2007, vol. 71, no. 2, p. 187].

    CAS  Google Scholar 

  59. Kurzin, I.A., Bozhko, I.A., Kalashnikov, M.P., et al., Izv. Akad. Nauk, Ser. Fiz., 2006, vol. 70, no. 4, pp. 591–592.

    Google Scholar 

  60. Kurzina, I.A., Bozhko, I.A., Kalashnikov, M.P., and Sharkeev, Yu.P., Mater. XVI Mezhdunar. soveshchaniya “Radiatsionnaya fizika tverdogo tela” (Proc. XVI Int. Meeting “Radiational Physics of Solids”), Sevastopol, 2006, pp. 313–320.

  61. Kozlov, E.V., Ryabchikov, A.I., and Sharkeev, Yu.P., Mater. II Mezhdunar. Simpoziuma “Fazovye prevrashcheniya v tverdykh rastvorakh i splavakh. OMA-1” (Proc. II Int. Symp. “ Phase Transformations in Solid Solutions and Melts. ÎÌÀ-”), Sochi, 2001, pp. 162–167.

  62. Kozlov, E.V., Ryabchikov, A.I., Sharkeev, Yu., et al., Proc. 6th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, 2002, pp. 238–241.

  63. Kozlov, E.V., Sharkeev, Yu.P., Fortuna, S.V., et al., Poverkhn. Rentgen., Sinkhrotron. Neitron. Issl., 2003, no. 7, pp. 31–35.

  64. Kurzina, I.A., Kalashnikov, M.P., and Bozhko, I.A., Mater. XIV Mezhdunar. soveshchaniya “Radiatsionnaya fizika tverdogo tela” (Proc. XIV Int. Meeting “Radiational Physics of Solids”), Sevastopol, 2004, pp. 362–366.

  65. Kurzina, I.A., Bozhko, I.A., and Kalasnikov, M.P., Proc. 7th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, July 25–30 2004, pp. 221–224.

  66. Sharkeev, Yu.P., Ryabchikov, A.I., Kozlov, E.V., et al., Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., 2004, no. 9, pp. 44–52.

  67. Bozhko, I.A., Fortuna, S.V., Kurzina, I.A., et al., J. Mater. Sci. Tech., 2004, vol. 20, no. 5, pp. 583–586.

    CAS  Google Scholar 

  68. Kurzina, I.A., Bozhko, I.A., Kalashnikov, M.P., and Sharkeev, Yu.P., Perspekt. Mater., 2005, no. 1, pp. 13–23.

  69. Kurzina, I.A., Bozhko, I.A., Kalashnikov, M.P., et al., Poverkhnost. Rentgen., Sinkhrotron. Neitron. Issl., 2005, no. 7, pp. 72–78.

  70. Kurzina, I.A., Kozlov, E.V., Bozhko, I.A., et al., Izv. Akad. Nauk, Ser. Fiz., 2005, vol. 69, no. 7, pp. 1002–1006.

    CAS  Google Scholar 

  71. Kurzina, I.A., Bozhko, I.A., Kalashnikov, M.P., et al., Khim. Fiz. Stekla, 2005, vol. 31, no. 4, pp.452–458.

    CAS  Google Scholar 

  72. Bozhko, I.A., Kurzina, I.A., Stepanov, I.B., and Sharkeev, Yu.P., Fiz. Khim. Obrab. Mater., 2005, no. 4, pp. 58–62.

  73. Fortuna, S.V., Sharkeev, Yu.P., and Kurzina, I.A., Vestn. Ural’sk. Gos. Tekhn. Univ. (UPI), 2005, vol. 62, no. 10,, pp. 59–62.

    Google Scholar 

  74. Kurzina, I.A., Bozhko, I.A., Kalashnikov, M.P., et al., Mater. 8go Mezhdistsiplinarnogo, mezhdunar. Simpoziuma “Fazovye prevrashcheniya v tverdykh rastvorakh i splavakh. OMA-2005” (Proc. 8th Interdisciplinary Int. Symp. “Phase Transformations in Solid Solutions and Alloys. OMA-2005”), Sochi, 2005, pp. 212–214.

  75. Kurzina, I.A., Bozhko, I.A., and Kalashnikov, M.P., Proc. 8th Conf. on Modification of Materials with Particle Beams and Plasma Flows (8th CMM), Tomsk, 2006, pp. 211–214.

  76. Knyazeva, A.G., Kurzina, I.A., and Sharkeev, Yu.P., Proc. 8th Conf. on Modification of Materials with Particle Beams and Plasma Flows (8th CMM), Tomsk, 2006, pp. 219–221.

  77. Kurzina, I.A., Kozlov, E.V., Sharkeev, Yu.P., et al., Surf. Coat. Tech., 2007, vol. 201, pp. 8463–8468.

    Article  CAS  Google Scholar 

  78. Stepanov, I.V., Ryabchikov, A.I., Kozlov, E.V., et al., Review of Scientific Instruments no. 77.03C115, 2006, Available from http://rsi.aip.org/rsi/copyright.jsp

  79. Kozlov, E.V., Ryabchikov, A.I., Sharkeev, Yu.P., et al., Surf. Coat. Tech., 2002, vols. 158–159, pp. 343–348.

    Article  Google Scholar 

  80. Ryabchikov, A.I., Stepanov, I.B., Dektjarev, S.V., and Sergeev, O.V., Rev. Sci. Instr., 1998, vol. 69, p. 810–815.

    Article  CAS  Google Scholar 

  81. Ryabchikov, A.M., Dektyarev, S.V., and Stepanov, I.B., Izv. Vyssh. Uchebn. Zaved. Fiz., 1998, no. 4, pp. 193–207.

  82. Ryabchikov, A.I., Stepanov, I.B., Dektjarev, S.V., and Sergeev, O.V., Rev. Sci. Instrum., 1998, vol. 69, pp. 810–815.

    Article  CAS  Google Scholar 

  83. Son, J.R. and Lee, H.M., Acta Mater, 1997, vol. 45, no. 11, pp. 4743–4749.

    Article  Google Scholar 

  84. Smithells, C.J., Metals Reference Book, London: Butterworths, 1962; Moscow: Metallurgiya, 1980.

    Google Scholar 

  85. Koneva, N.A., Zhdanov, A.N., and Kozlov, E.V., Izv. Akad. Nauk, Ser. Fiz., 2006, vol. 70, no. 4, p. 582–585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kurzina.

Additional information

Original Russian Text © I.A. Kurzina, 2010, published in Materialovedenie, 2010, No. 2, pp. 49–64.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurzina, I.A. Ion-implanted nanodimensional intermetallic phases. Inorg. Mater. Appl. Res. 1, 254–269 (2010). https://doi.org/10.1134/S2075113310030135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113310030135

Key words

Navigation