Skip to main content
Log in

Thermodynamics of the formation of nanostructure of polymers in amorphous state

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Δ\( \mathop {G^{im} }\limits^ \eqsim \)T) dependences for oversegmental structures of polymers obtained within a macrothermodynamic hierarchy model qualitatively and quantitatively correspond to analogous correlations for a wide set of substances obtained earlier, which confirms the reality of these nanostructures for the amorphous state of polymers. Derived equations are equally applicable for the description of thermodynamic behavior of these nanostructures and can be used for their quantitative modeling. If it is necessary to carry out more rigorous calculations, corrections should be made to the change in the heat capacity at phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanchev, S.S. and Ozerin, A.N., Nanostrucures in Polymeric Systems, Vysokomolek. Soed. B, 2006, vol. 48, no. 8, pp. 1531–1544.

    CAS  Google Scholar 

  2. Malamatov, A.Kh., Kozlov, G.V., and Mikitaev, M.A., Mekhanizmy uprochneniya polimernykh nanokompoziim tov (Strengthening Mechanisms for Polymer Nanocomposites), Moscow: RKhTU im. Mendeleeva, 2006.

    Google Scholar 

  3. Aloev, V.Z. and Kozlov, G.V., Fizika orientatsionnykh yavlenii v polimernykh materialakh (Physics of Orientational Phenomena in Polymeric Materials), Nalchik: Poligrafservis i T, 2002.

    Google Scholar 

  4. Kozlov, G.V. and Sanditov, D.S., Angarmonicheskie effekty i fiziko-mekhanicheskie svoistva polimerov (Anharmonic Effects and Physical Mechanical Properties of Polymers), Novosibirsk: Nauka, 1994.

    Google Scholar 

  5. Kozlov, G.V., Beloshenko, V.A., Varyukhin, V.N., and Lipatov, Yu.S., Application of Cluster Model of the Description of Epoxy Polymer Structure and Properties, Polymer, 1999, vol. 40, no. 4, pp. 1045–1051.

    Article  CAS  Google Scholar 

  6. Kozlov, G.V. and Novikov, V.U., Cluster Model of Polymers Amorphous State, Usp. Fiz. Nauk, 2001, vol. 171, no. 7, pp. 717–764.

    Article  Google Scholar 

  7. Kalinchev, E.L. and Sakovtseva, M.B., Svoistva i pererabotka termoplastov (Thermoplastics Properties and Processing), Leningrad: Khimiya, 1983.

    Google Scholar 

  8. Gladyshev, G.P., Termodinamika i makrokinetika prirodnykh ierarkhicheskikh protsessov (Thermodynamics and Macrokinetics of Natural Hierarchical Processes), Moscow: Nauka, 1988.

    Google Scholar 

  9. Gladyshev, G.P., Motive Power of Biological Evolution, Vestn. Akad. Nauk, 1994, vol. 64, no. 3, pp. 221–228.

    Google Scholar 

  10. Gladyshev, G.P. and Gladyshev, D.P., O fizikokhimicheskoi teorii biologicheskoi evolyutsii (On Physicochemical Theory of Biological Evolution), Moscow: Olimp, 1993.

    Google Scholar 

  11. Gladyshev, G.P., Macrothermodynamics of Biological Systems and Evolution, J. Biolog. Syst., 1993, vol. 1, no. 2, pp. 115–129.

    Article  Google Scholar 

  12. Gladyshev, G.P. and Gladyshev, D.P., Approximate Thermodynamical Equation for Nonequilibrium Phase Transitions, Zh. Fiz. Khim., 1994, vol. 68, no. 5, pp. 790–792.

    Google Scholar 

  13. Gladyshev, G.P. and Gladyshev, D.P., On Evolution Model for Biology Systems, Izv. Akad. Nauk. Ser. Biol., 1994, no. 1, pp. 14–19.

  14. Matusoka, S., Aloisio, C.J., and Bair, H.E., Interpretation on Shift of Relaxation Time with Deformation in Glassy Polymers in Terms of Excess Enthalpy, J. Appl. Phys., 1973, vol. 44, no. 10, pp. 4265–4268.

    Article  Google Scholar 

  15. Sanditov, D.S., Kozlov, G.V., Belousov, V.N., and Lipatov, Yu.S., Cluster Model and the Model of Fluctuating of Free Volume of Polymeric Bodies, Fiz. Khim. Stekla, 1994, vol. 20, no. 1, pp. 3–13.

    CAS  Google Scholar 

  16. Beloshenko, V.A., Kozlov, G.V., and Lipatov, Yu.S., Vitrification Mechanism of Cross-Linked Polymers, Fiz. Tverd. Tela, 1994, vol. 36, no. 10, pp. 2903–2906.

    CAS  Google Scholar 

  17. Matusoka, S. and Bair, H.E., The Temperature Drop in Glassy Polymers during Deformation, J. Appl. Phys., 1977, vol. 48, no. 10, pp. 4058–4062.

    Article  Google Scholar 

  18. Budtov, V.P., Fizicheskaya khimiya rastvorov polimerov (Physical Chemistry of Polymers Solutions), St.Petersburg: Khimiya, 1992.

    Google Scholar 

  19. Privalko, V.P. and Lipatov, Yu.S., Effect of Molecular Chain Flexibility onto Glass Transition Temperature of Linear Polymers, Vysokomolek. Soed. A, 1971, vol. 13, no. 12, pp. 2733–2737.

    CAS  Google Scholar 

  20. Gladyshev, G.P., Thermodynamics and Biological Evolution. A Motive Force of Evolution, J. Biolog. Phys., 1994, vol. 20, no. 2, pp. 213–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kozlov.

Additional information

Original Russian Text © G.V. Kozlov, M.T. Bashorov, A.K. Mikitaev, G.E. Zaikov, 2010, published in Materialovedenie, 2010, No. 1, pp. 10–13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, G.V., Bashorov, M.T., Mikitaev, A.K. et al. Thermodynamics of the formation of nanostructure of polymers in amorphous state. Inorg. Mater. Appl. Res. 1, 195–199 (2010). https://doi.org/10.1134/S2075113310030044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113310030044

Key words

Navigation