Skip to main content
Log in

Two Life Strategies in Copepod Cryptic Species: Coexistence and Displacement

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

Among invasive species there is a special group so named cryptic species for which morphological identification is very difficult. This review is devoted to analysis of the dispersal routes of two copepod cryptic species complexes into aquatic ecosystems. Eurytemora carolleeae introduction was revealed in 2007 with bar-code. The species was described as a new taxon; its distribution was also studied using morphology. Biological invasions of two other Copepod species Acanthocyclops americanus and Eurytemora caspica were mainly studied using morphological methods since the species have already been described. At the same time, to confirm their distinctions from local forms molecular genetic tools were also used. Two scenarios resulting from cryptic species’ invasions and their competitions with native species were the partly (E. carrolleeae) or full displacement (A. americanus). When assessing the possible negative impact of invasive species on competitors, the most attention should be paid to predator species. Identification of cryptic species significantly complicates the situation with the assessment of bioinvasion and needs the use of molecular methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abramova, E., Vishnyakova, I., Boike, J., Abramova, A., Solovyev, G., and Martynov, F., Structure of freshwater zooplankton communities from tundra waterbodies in the Lena River Delta, Russian Arctic, with a discussion on new records of glacial relict copepods, Polar Biol., 2017, vol. 40, no. 8, pp. 1629–1643. https://doi.org/10.1007/s00300-017-2087-2

    Article  Google Scholar 

  2. Ackerman, J.D., Sim, B., Nichols, S.J., and Claudi, R.M., A review of the early life history of zebra mussels (Dreissena polymorpha): Comparisons with marine bivalves, Can. J. Zool., 1994, vol. 72, pp. 1169–1179.

    Article  Google Scholar 

  3. Alekseev, V., and Souissi, A., A new species within the Eurytemora affinis complex (Copepoda: Calanoida) from the Atlantic Coast of USA, with observations on eight morphologically different European populations, Zootaxa, 2011, vol. 2767, pp. 41–56.

    Article  Google Scholar 

  4. Alekseev, V., Makrushin, A., and Jiang-Shiou, H., Survivorship of activated resting stages in toxic environments: Provide treatment cues for ballast water, Mar. Pollut. Bull., 2010, vol. 61, pp. 254–258.

    Article  CAS  PubMed  Google Scholar 

  5. Alekseev, V.R., Growth, development and production of mass species of cyclops in the hollow system of the Volga delta, Cand. Sci. (Biol.) Dissertation, Leningrad, 1981.

  6. Alekseev, V.R., Opredelitel’ presnovodnykh bespozvonochnykh Rossii i sopredel’nykh territorii (Key to Freshwater Invertebrates of Russia and Adjacent Lands), vol. 2: Rakoobraznye (Crustacea, Suborder Cyclopoida; Suborder Harpacticoida), St. Petersburg: Zool. Instit. Ross. Akad. Nauk, 1995, pp. 75–128.

  7. Alekseev, V.R., Key to freshwater Cyclopidae of Russia and adjacent lands (Crustacea), Zoosystematica Rossica, 1998, vol. 7, pp. 25–43.

    Google Scholar 

  8. Alekseev, V. R., Confusing invader: Acanthocyclops americanus (Copepoda: Cyclopoida) and its biological, anthropogenic and climate-dependent mechanisms of rapid distribution in Eurasia, Water, 2021, vol. 13, no. 10, p. 1423. https://doi.org/10.3390/w13101423

    Article  CAS  Google Scholar 

  9. Alekseev, V. R., and Kossova, A. A., Finding of Acanthocyclops americanus (Copepoda) in the delta of the Volga River, J. Zool., 1976, vol. 5511, pp. 1726–1728.

    Google Scholar 

  10. Alekseev, V.R. and Pugachev, V.A., Some peculiarities of food relationships between Acanthocyclops americanus (March.) and phyllopod nauplii, in Izuchenie povedeniya vodnykh bespozvonochnykh v estestvennykh usloviyakh: tezisy dokladov III Vsesoyuznogo simpoziuma po povedeniyu vodnykh bespozvonochnykh (Study of Aquatic Invertebrates’ Behaviour in Natural Conditions, Proc. III All-Union Symp. on the Behaviour of Aquatic Invertebrates), Borok, 1978, pp. 3–4.

  11. Alekseev, V.R., and Sukhikh, N.M., Ust-Luga seaport of Russia: Biological invasions and resting stages accumulation, Life, 2023, vol. 13, no. 1, p. 117. https://doi.org/10.3390/life13010117

    Article  Google Scholar 

  12. Alekseev, V.R., Fefilova, E. and Dumont, H.J., Some noteworthy free-living copepods from surface freshwater in Belgium, Belgian Journal of Zoology, 2002, vol. 132, pp. 133–139.

    Google Scholar 

  13. Alekseev, V.R., Abramson, N.I., and Sukhikh, N.M., Introduction of sibling species to the ecosystem of the Baltic Sea, Dokl. Biol. Sci., 2009, vol. 429, no. 5, pp. 694—697.

    Article  Google Scholar 

  14. Alekseev, V.R., Miracle, M.R., Sahuquillo, M., and Vicente, E., Redescription of Acanthocyclops vernalis (Fischer, 1853) and Acanthocyclops robustus (Sars, 1863) from neotypes, with special reference to their distinction from Acanthocyclops americanus (Marsh, 1892) and its invasion of Eurasia, Limnetica, 2020, vol. 40, pp. 57–78.

    Article  Google Scholar 

  15. Anufriieva E., Hołyńska M., and Shadrin N., Current invasions of Asian Cyclopid species (Copepoda: Cyclopidae) in Crimea, with taxonomical and zoogeographical remarks on the hypersaline and freshwater fauna, Ann. Zool., 2014, vol. 64, no. 1, pp. 109–130. https://doi.org/10.3161/000345414X680636

    Article  Google Scholar 

  16. Arnold, J.D. and Yue, H.S., Prevalence, relative abundance, and mean intensity of plerocercoids of Proteocephalus sp. in young striped bass in the Sacramento-San Joaquin estuary, Calif. Fish Game, 1997, vol. 83, no. 3, pp. 105—117.

    Google Scholar 

  17. Beasley, D.E., Bonisoli-Alquati A., and Mousseau T.A., The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: A meta-analysis, Ecol. Indic., 2013, vol. 30, pp. 218–226. https://doi.org/10.1016/j.ecolind.2013.02.024

    Article  Google Scholar 

  18. Beyrend-Dur, D., Souissi, S., Devreker, D., Winkler, G., and Hwang, J.S., Life cycle traits of two transatlantic populations of Eurytemora affinis (Copepoda: Calanoida): Salinity effects, J. Plankton Res., 2009, vol. 31, no. 7, pp. 713–728. https://doi.org/10.1093/plankt/fbp020

    Article  Google Scholar 

  19. Carlton, J.T., Biological invasions and cryptogenic species, Ecology, 1996, vol. 77, pp. 1653–1655. https://doi.org/10.2307/2265767

    Article  Google Scholar 

  20. Chuykov, Y.S., Fauna of planktonic invertebrate reservoirs of the Northern Caspian and Caspian Seas, in Gidrobiologicheskie issledovaniya estuariev (Hydrobiological Studies of Estuaries), St. Petersburg: Zool. Inst. Ross. Akad. Nauk, 1986, pp. 58–74.

  21. Colwell, R.R., Infectious disease and environement: Cholera as a paradigm for waterborne disease, Int. Microbiol., 2004, vol. 7, pp. 285–289.

    PubMed  Google Scholar 

  22. Declerck, S.A., Malo, A.R., Diehl, S., et al., Rapid adaptation of herbivore consumers to nutrient limitation: Eco-evolutionary feedbacks to population demography and resource control, Ecol. Lett., 2015, vol. 18, pp. 553–562. https://doi.org/10.1111/ele.12436

    Article  PubMed  Google Scholar 

  23. Devreker, D., Souissi, S., Molinero, J.C., and Nkubito, F., Trade-offs of the copepod Eurytemora affinis in mega-tidal estuaries. Insights of high frequency sampling in the Seine estuary, J. Plankton Res., 2008, vol. 30, no. 12, pp. 1329–1342. https://doi.org/10.1093/plankt/fbn086

    Article  Google Scholar 

  24. Devreker, D., Souissi, S., Molinero, J.C., Beyrend-Dur, D., Gomez, F., and Forget-Leray, J., Tidal and annual variability of the population structure of Eurytemora affinis in the middle part of the Seine estuary during 2005, Estuarine, Coastal Shelf Sci., 2010, vol. 89, no.4, pp. 245–255. https://doi.org/10.1016/j.ecss.2010.07.010

    Article  CAS  Google Scholar 

  25. Devreker, D., Pierson, J., Souissi, S., Kimmel, D., and Roman, M., An experimental approach to estimate egg production and development rate of the Calanoid copepod Eurytemora affinis in Chesapeake Bay, USA, J. Exp. Mar. Biol. Ecol., 2012, vol. 416–417, pp. 72–83. https://doi.org/10.1016/j.jembe.2012.02.010

    Article  Google Scholar 

  26. Dodson S.I., Skelly D.A., and Lee C.E., Out of Alaska: Morphological evolution and diversity within the genus Eurytemora from its ancestral range (Crustacea, Copepoda), Hydrobiologia, 2010, vol. 653, pp. 131–148.

    Article  Google Scholar 

  27. Dur, G., Souissi, S., Devreker, D., Ginot, V., Schmitt, F.G., and Hwang, J.S., An individual based model to study the reproduction of egg bearing copepods: application to Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary, Ecol. Model., 2009, vol. 8, pp. 1073–1089. https://doi.org/10.1016/j.ecolmodel.2008.12.013

    Article  Google Scholar 

  28. Dussart, B.H., Contribution à l'étude des Copépodes d’Espagne, Publicaciones del Instituto de Biologia Aplicada (Barcelona), 1967, vol. 42, pp. 87–105.

    Google Scholar 

  29. Dussart, B.H. Acanthocyclops americanus en France, Bulletin du Muséum National d’Histoire Naturelle, 1971, vol. 42, pp. 725–729.

    Google Scholar 

  30. Gelembiuk, G.W., May, G.E., and Lee, C.E., Phylogeography and systematics of zebra mussels and related species, Mol. Ecol., 2006, vol. 15, pp. 1033–1050. https://doi.org/10.1111/j.1365-294X.2006.02816.x

    Article  CAS  PubMed  Google Scholar 

  31. Geller, J.B., Darling, J.A., and Carlton, J.T., Genetic perspectives on marine biological invasions, Annual Review of Marine Science, 2010, vol. 2, pp. 401–427. https://doi.org/10.1146/annurev.marine.010908.163745

    Article  Google Scholar 

  32. Goedknegt, M.A., Thieltges, D.W., van der Meer, J., Wegner, K.M., and Luttikhuizen, P.C., Cryptic invasion of a parasitic copepod: Compromised identification when morphologically similar invaders co-occur in invaded ecosystems, PLoS One, 2018, vol. 13, no. 3, p. e0193354. https://doi.org/10.1371/journal.pone.0193354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gollasch, S., MacDonald, E., Belson, S., Botnen, H., Christensen, J.T., Hamer, J.P., Houvenaghel, G., Jermert, A., Lucas, I., Masson, D., et al., Distribution, impacts and management. Life in ballast tanks, in Invasive Aquatic Species of Europe, Leppäkoski, E., Olenin, S., and Gollasch, S., Eds., Dordrecht: Springer, 2002, pp. 217–231.

    Google Scholar 

  34. Grabowski, M., Rewicz, T., Bacela-Spychalska, K., et al., Cryptic invasion of Baltic lowlands by freshwater amphipod of Pontic origin, Aquatic Invasions, 2012, vol. 7, no. 3, pp. 337–346. https://doi.org/10.3391/ai.2012.7.3.005

    Article  Google Scholar 

  35. Gurney, R., British Fresh-Water Copepod, London: Ray Society, 1931, vol. 1, p. 238

    Book  Google Scholar 

  36. Hirche, H.-J., Egg production of Eurytemora affinis—Effect of k-strategy, Estuarine, Coastal Shelf Sci., 1992, vol. 35, pp. 395–407. https://doi.org/10.1016/S0272-7714(05)80035-6

    Article  Google Scholar 

  37. Hutchinson, G. E., The paradox of the plankton, The American Naturalist, 1961, vol. 95, pp. 137–145.

    Article  Google Scholar 

  38. Ishida, S., and Taylor D.J., Quaternary diversification in a sexual Holarctic zooplankter, Daphnia galeata, Mol. Ecol., 2007, vol. 16, pp. 569–582. https://doi.org/10.1111/j.1365-294X.2006.03160.x

    Article  PubMed  Google Scholar 

  39. Jarić, I., Heger, T., Castro Monzon, F., Jeschke, J.M., Kowarik, I., McConkey, K.R., Pyšek, P., Sagouis, A., and Essl, F., Crypticity in biological invasions, Trends Ecol. Evol., 2019, vol. 34, no. 4, pp. 291–302. https://doi.org/10.1016/j.tree.2018.12.008

    Article  PubMed  Google Scholar 

  40. Kamburska, L., Schrimpf, W., Djavidnia, S., Shiganova, T., and Stefanova, K., Addressing the Ecological Issue of the Invasive Species: Special Focus on the Ctenophore Mnemiopsis leidyi (Agassiz, 1865) in the Black Sea, EUR 22310 EN, EC JRC Institute of Environment and Sustainability, 2006, p. 59.

  41. Kiefer, F., Freilebende, Copepoda, in Die Binnengewässer Einzeldarstellungen aus del Limnologie und ihren Nachbargebietien. Das Zooplankton der Binnengewässer, 2. Teil, Elster, H.J. and Ohle, W., Eds., Stuttgart: Schweizerbart’sche Verlagsbuchhandlung, 1978.

    Google Scholar 

  42. Kimmel, D.G., Miller, W.D., and Roman, M.R. Regional scale climate forcing of mesozooplankton dynamics in Chesapeake Bay, Estuaries and Coasts, 2006, vol. 29, no. 3, pp. 375–387. https://doi.org/10.1007/BF02784987

    Article  Google Scholar 

  43. Knatz, G., Succession of copepod species in a middle Atlantic estuary, Estuaries, 1978, vol. 1, pp. 68–71.

    Article  Google Scholar 

  44. Knowlton, N., Sibling species in the sea, Annu. Rev. Ecol. Syst., 1993, vol. 24, pp. 189–216. https://doi.org/10.1146/annurev.es.24.110193.001201

    Article  Google Scholar 

  45. Kotov, A.A, Garibian, P.G., Bekker, E.I., Taylor, D.J., and Karabanov, D.P., A new species group from the Daphnia curvirostris species complex (Cladocera: Anomopoda) from the eastern Palaearctic: Taxonomy, phylogeny and phylogeography, Zool. J. Lin. Soc., 2020. https://doi.org/10.1093/zoolinnean/zlaa046

  46. Kruppa, E.G., On the morphological deviations of Acanthocyclops americanus Marsh and Cyclops vicinus Uljanin (Crustacea,Copepoda) from the polluted water bodies of Almaty Region (Southeastern Kazakhstan), Russian Journal of Aquatic Ecology, 1998, vol. 7, pp. 11–16.

    Google Scholar 

  47. Kruppa, E. G., The ecological preferences of Eurytemora affinis (Poppe, 1880) in the water bodies of Kazakhstan (Central Asia) and some notes about Eurytemora caspica Sukhikh & Alekseev, 2013, Crustaceana, 2020, vol. 93, nos. 3–5, pp. 405–428. https://doi.org/10.1163/15685403-00003967

    Article  Google Scholar 

  48. Lajus, D., Sukhikh, N., and Alekseev, V., Cryptic or pseudocryptic: Can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the Eurytemora affinis species complex, Ecol. Evol., 2015, vol. 5, no. 12, pp. 2374–2385. https://doi.org/10.1002/ece3.1521

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lajus, D., Sukhikh, N., and Alekseev, V., Stochastic phenotypic variation: Empirical results and potential use in Eurytemora research (Copepoda, Calanoida), Crustaceana, 2020, vol. 93, pp. 317–336. https://doi.org/10.1163/15685403-00003983

    Article  Google Scholar 

  50. Lazareva, V. I., Distribution of Eurytemora caspica Sukhikh & Alekseev, 2013 (Copepoda, Calanoida) in the water reservoirs of the Volga and Don River basins, Crustaceana, 2020, vol. 93 (3–5), pp. 261–273. https://doi.org/10.1163/15685403-00003982

    Article  Google Scholar 

  51. Lazareva, V.I., Current state and long-term dynamics of zooplankton of the Tsimlyansk Reservoir (Don River, Russia), Arid Ecosyst., 2021, vol. 11, no. 2, pp. 213–219. https://doi.org/10.1134/S2079096121020098

    Article  Google Scholar 

  52. Lazareva, V.I., Sabitova, R.Z., and Sokolova, E.A., Features of structure and distribution of late summer (August) zooplankton in the Volga reservoirs, Tr. Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 2018, no. 82 (85), pp. 28–51. https://doi.org/10.24411/0320-3557-2018-1-0011

  53. Lee, C.E., Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis, Evolution, 1999, vol. 53, 1423–1434. https://doi.org/10.2307/2640889

    Article  PubMed  Google Scholar 

  54. Lee, C.E., Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate populations, Evolution, 2000, vol. 54, pp. 2014–2027. https://doi.org/10.1111/j.0014-3820.2000.tb01245.x

    Article  CAS  PubMed  Google Scholar 

  55. Lee, C.E. and Frost, B.W., Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae), Hydrobiologia 2002, vol. 480, pp. 111–128.

    Article  CAS  Google Scholar 

  56. Lee, C.E., Remfert, J.L., and Chang, Y., Response to selection and evolvability of invasive species, Genetica, 2007, vol. 129, no. 2, pp. 179—192. https://doi.org/10.1007/s10709-006-9013-9

    Article  PubMed  Google Scholar 

  57. Lloyd, S., Elliott, D., and Roman, M., Egg production by the copepod, Eurytemora affinis, in Chesapeake Bay turbidity maximum regions, J. Plankton. Res., 2013, vol. 35, no. 2, p. 299. https://doi.org/10.1093/plankt/fbt003

    Article  Google Scholar 

  58. Lowndes, A.G., On Cyclops americanus, Marsh, Annals and Magazine of Natural History, 1926, vol. 17, pp. 616–619. https://doi.org/10.1080/00222932608633452

    Article  Google Scholar 

  59. Lowndes, A.G., Cyclops americanus Marsh. A discussion and description of its specific characteristics and its occurrence in Europe, Int. Rev. Gesamten Hydrobiol., 1928, vol. 19, pp. 12–20. https://doi.org/10.1002/iroh.19280190103

    Article  Google Scholar 

  60. Lowndes, A.G. Eurytemora thompsoni, A. Willey, a new European record, Annals and Magazine of Natural History, 1931, vol. 8, pp. 501–507.

    Article  Google Scholar 

  61. Mergeay, J., Verschuren D., and de Meester L., Cryptic invasion and dispersal of an American Daphnia in East Africa, Limnol. Oceanogr., 2005, vol. 50, pp. 1278–1283. https://doi.org/10.4319/lo.2005.50.4.1278

    Article  CAS  Google Scholar 

  62. Mirabdullayev, I.M., and Defaye, D., On the taxonomy of the Acanthocyclops robustus species complex (Copepoda, Cyclopidae), Acanthocyclops robustus (G.O. Sars, 1863) and Acanthocyclops trajani n. sp., Selevinia, 2002, vols. 1–4, pp. 7–20.

    Google Scholar 

  63. Mirabdullayev, I.M. and Defaye, D., On the taxonomy of the Acanthocyclops robustus species complex (Copepoda, Cyclopidae): Acanthocyclops brevispinosus and A. einslei sp. n., Vestn. Zool., 2004, pp. 38, 27–37.

  64. Miracle, M.R., Alekseev, V., Monchenko, V., Sentandreu, V., and Vicente, E., Molecular-geneticbased contribution to the taxonomy of the Acanthocyclops robustus group, J. Nat. Hist., 2013, vol. 47, рр. 863–888. https://doi.org/10.1080/00222933.2012.744432

    Article  Google Scholar 

  65. Miura, O., Molecular genetic approaches to elucidate the ecological and evolutionary issues associated with biological invasions, Ecol. Res., 2007, vol. 22, pp. 876–883. https://doi.org/10.1007/s11284-007-0389-5

    Article  CAS  Google Scholar 

  66. Monakov, A.V., Feeding of Freshwater Invertebrates, Ghent: Kenobi Publications, 2003.

    Google Scholar 

  67. Monchenko, V. I., On species independence of Acanthocyclops americanus (Marsh) and on its finding in the Soviet Union, Zool. Zh., 1961, vol. 40, pp. 13–19.

    Google Scholar 

  68. Monchenko, V.I., Shchelepnoroti tsyklopopodibni, tsyklopy (Cyclopidae) (Gnathostome Cyclopoids (Cyclopidae)), Kyiv, Ukraine: Naukova Dumka, 1974.

  69. Morais, P., and Reichard, M., Cryptic invasions: A review, Sci. Total Environ., 2017, vol. 613, pp. 1438–1448. https://doi.org/10.1016/j.scitotenv.2017.06.133

    Article  CAS  PubMed  Google Scholar 

  70. Novak, S.J., Geographic origins and introduction dynamics, in Encyclopedia of Biological Invasions, Simberloff, D. and Rejmánek, M., Eds., Berkeley and Los Angeles: University of California Press, 2011, pp. 273–280.

    Google Scholar 

  71. Panov, V., and Caceres, C., Role of diapause in dispersal of aquatic invertebrates, in Diapause in Aquatic Invertebrates: Theory and Human Use, Dordrecht: Springer, 2007, pp. 187–195. https://doi.org/10.1007/978-1-4020-5680-2_12

  72. Papakostas, S., Michaloudi, E., Proios, K., et al., Integrative taxonomy recognises evolutionary units despite widespread mitonuclear discordance: Evidence from a rotifer cryptic species complex, Syst. Biol., 2016, vol. 65, pp. 508–524. https://doi.org/10.1093/sysbio/syw016

    Article  PubMed  Google Scholar 

  73. Piasecki, W., Goodwin, A.E., Eiras, J.C., and Nowak, B.F., Importance of copepod in freshwater aquaculture, Zool. Stud., 2004, vol. 43, no. 2, pp. 193–205.

    Google Scholar 

  74. Pierson, J.J., Kimmel, D.G., and Roman, M.R., Temperature impacts on Eurytemora carolleeae size and vital rates in the upper Chesapeake Bay in winter, Estuaries and Coasts, 2016, vol. 39, no. 4, pp. 1122–1132. https://doi.org/10.1007/s12237-015-0063-z

    Article  CAS  Google Scholar 

  75. Roman, J., Diluting the founder effect: Cryptic invasions expand a marine invader’s range, Proc. R. Soc. B, 2006, vol. 273, pp. 2453–2459. https://doi.org/10.1098/rspb.2006.3597

    Article  PubMed  PubMed Central  Google Scholar 

  76. Samchishina, L.V., Ecological–faunistic and morphological aspects of the study of freshwater and brackish-water Calanoida (Crustacea, Copepoda) of Ukraine, Cand Sci. (Biol.) Dissertation, Kyiv: I. I. Shmal’gauzen Inst. Zool. Natl. Acad. Sci. Ukraine, 2005.

  77. Sharma, P. and Kotov, A.A., Establishment of Chydorus sphaericus (O.F. Muller, 1785) (Crustacea: Cladocera) in Australia: Consequences of mass fish stocking from Northern Europe?, J. Limnol., 2015, vol. 74, pp. 225–233. https://doi.org/10.4081/jlimnol.2014.1037

    Article  Google Scholar 

  78. Sługocki, Ł., Rymaszewska, A., and Kirczuk, L., To fit or to belong: Characterization of the non-native invader Eurytemora carolleeae (Copepoda: Calanoida) in the Oder River system (Central Europe), Aquatic Invasions, 2021, vol. 16, no. 3, pp. 443–460. https://doi.org/10.3391/ai.2021.16.3.04

    Article  Google Scholar 

  79. Sukhikh, N.M., and Alekseev, V.R., Eurytemora caspica sp. nov. from the Caspian Sea—One more new species within the E. affinis complex (Copepoda: Calanoida), Proc. Zool. Inst. Russ. Acad. Sci., 2013a, vol. 317, no. 1, pp. 85—100. https://doi.org/10.31610/trudyzin/2013.317.1.85

    Article  Google Scholar 

  80. Sukhikh, N.M., Souissi, A., Souissi, S., and Alekseev, V.R., Invasion of Eurytemora sibling species (Copepoda: Temoridae) from North America into the Baltic Sea and European Atlantic coast estuaries, J. Nat. Hist., 2013b, vol. 47, nos. 5–12, pp. 753–767. https://doi.org/10.1080/00222933.2012.716865

  81. Sukhikh, N.M., Souissi, A., Souissi, S., Winkler, G., Castric, V., Holl, A.C., and Alekseev, V.R., Genetic and morphological heterogeneity among populations of Eurytemora affinis (Crustacea: Copepoda: Temoridae) in European waters, C.R. Biol., 2016, vol. 339, pp. 197–206. https://doi.org/10.1016/j.crvi.2016.03.004

    Article  PubMed  Google Scholar 

  82. Sukhikh, N.M., Souissi, A., Souissi, S., Holl, A.C., Schizas, N.V., and Alekseev V., Life in sympatry: Coexistence of native Eurytemora affinis and invasive Eurytemora carolleeae in the Gulf of Finland (Baltic Sea), Oceanologia, 2019, vol. 61, pp. 227–238. https://doi.org/10.1016/j.oceano.2018.11.002

    Article  Google Scholar 

  83. Sukhikh, N., Abramova, E., Holl, A.C., Souissi, S., and Alekseev, V., A comparative analysis of genetic differentiation of the E. affinis species complex and some other Eurytemora species, using CO1, ITSn and 18SrRNA genes (Copepoda, Calanoida), Crustaceana, 2020a, vol. 93, pp. 931–955. https://doi.org/10.1163/15685403-bja10074

    Article  Google Scholar 

  84. Sukhikh, N.M., Lazareva, V.I., and Alekseev, V.R., Copepod Eurytemora caspica Sukhikh et Alekseev, 2013 (Crustacea, Calanoida) in Volga and Kama River Reservoirs, Inland Water Biol., 2020b, vol. 13, pp. 198–205. https://doi.org/10.1134/S1995082920020145

    Article  Google Scholar 

  85. Taylor, D.J., Connelly, S.J., and Kotov, A.A., The Intercontinental phylogeography of neustonic daphniids, Sci. Rep., 2020, vol. 10, p. 1818. https://doi.org/10.1038/s41598-020-58743-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Uitto, A., Gorokhova, E., and Valipakka, P., Distribution of the nonindigenous Cercopagis pengoi in the coastal waters of the eastern Gulf of Finland, ICES J. Mar. Sci., 1999, vol. 56 (suppl.), pp. 49–57. https://doi.org/10.1006/jmsc.1999.0613

    Article  Google Scholar 

  87. Vasquez, A.A., Hudson, P.L., Fujimoto, M., Keeler, K., Armenio, P.M., and Ram, J.L., Eurytemora carolleeae in the Laurentian Great Lakes revealed by phylogenetic and morphological analysis, J. Great Lakes Res., 2016, vol. 42, no. 4, pp. 802–811. https://doi.org/10.1016/j.jglr.2016.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vijushkova, V.P., and Kuznetsova, V.P., Distribution of Acanthocyclops americanus (Marsh.) Copepoda in USSR, Zool. Zh., 1974, vol. 53, pp. 1873–1875.

    Google Scholar 

  89. Wasmund, N., Augustin, C., Pollehne, F., Siegel, H., and Zettler, M., Biologische standseinschätzung der Ostsee im Jahre, 2012, Warnemünde, Germany: Meereswiss Ber, 2013, p. 92.

  90. weatherarchive.ru/Sea/Ust-luga/July. Accessed February 27, 2023.

  91. https://en.wikipedia.org/wiki/2010_Northern_Hemisphe-re_heat_waves. Accessed February 27, 2023

  92. Winkler, G., Dodson, J.J., and Lee, C.E., Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis, Mol. Ecol., 2008, vol. 17, pp. 415–430. https://doi.org/10.1111/j.1365-294X.2007.03480.x

    Article  PubMed  Google Scholar 

  93. Winkler, G., Souissi, S., Poux, C., and Castric, V. Genetic hetero-geneity among Eurytemora affinis populations in Western Europe, Mar. Biol., 2011, vol. 158, pp. 1841–1856. https://doi.org/10.1007/s00227-011-1696-5

    Article  Google Scholar 

  94. Zakharov, V. M., Future Prospects for Population Phenogenetics, Soviet Scientific Reviews Series, Section F, 1989, vol. 4, pp. 1–79.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are very grateful to O. Chaban for her help preparing this manuscript. For this study, the Federal Collection of the Zoological Institute of the Russian Academy of Sciences (St. Petersburg, Russia) was used.

Funding

This work was supported by a grant from the Russian Science Foundation (RSF 23-24-00296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Alekseev.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICTS OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhikh, N., Alekseev, V. Two Life Strategies in Copepod Cryptic Species: Coexistence and Displacement. Russ J Biol Invasions 14, 666–676 (2023). https://doi.org/10.1134/S2075111723040161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111723040161

Keywords:

Navigation