Skip to main content
Log in

Integrated Approach to Accounting for Environmental Factors in Models of the Current Distribution and Climatic Dynamics of Ambrosia artemisiifolia L. in the Caucasus

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

Current climate change, habitat degradation, and road network development contribute to the invasion of alien plant species in areas of more northern latitudes and higher altitudes. Using the maximum entropy method (Maxent), we built spatial distribution models of Ambrosia artemisiifolia, considering abiotic, biotic, and anthropogenic factors and accessibility to the area. Maps of the species current distribution in the Caucasus and its range dynamics according to the climate change scenarios were constructed. The most important variables determining A. artemisiifolia spatial localization in the region were as follows: distance to roads (not more than 0–5 m), terrain roughness (gentle areas), and humidity (climate from semiarid to perhumid). The distance of 0–5 m is also characterized by the area accessibility factor (species dispersal capacity), which contributed about 47% to the final model. Species dispersal beyond roadsides was hindered by forests and meadows with the probability of A. artemisiifolia occurrence not exceeding 0.01%. The species core ranges were predicted in foothills and low mountains of the Western and Central Caucasus, Western and Central Transcaucasia, the northwestern Lesser Caucasus, and the Caspian Sea coast. The species invasion in highlands could occur along the gentle river valleys that concentrate the main mountain roads. According to the pessimistic and optimistic climate change scenarios, by 2100, the decline in optimal A. artemisiifolia habitats will be 87 and 27%, respectively, and will affect mainly the plain areas of the currently most humid regions. The main core ranges were predicted in the middle mountains and highlands of the Caucasus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Adhikari, D., Singh, P., Tiwary, R., Barik, S., and Barik, K., Modelling the environmental niche and potential distribution of Magnolia campbellii Hook. f. and Thomson, in Plants of Commercial Values, New Delhi: New India Publishing Agency, 2019, pp. 277–295.

    Google Scholar 

  2. Afonin, A., Baranova, O., Fedorova, Yu., Abramova, L., Boshko, T., Kotsareva, N., Li, Yu., Milyutina, E., Pikalova, N., Prokhorov, V., and Senator, S., Ecogeographical potential of the Ambrosia artemisiifolia L. northward expansion in European Russia estimated on the basis of a comparison of the northern limits of its primary and secondary ranges, Russ. J. Biol. Invasions, 2022, vol. 13, pp. 159–166. https://doi.org/10.1134/S2075111722020023

    Article  Google Scholar 

  3. Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom. Control, 1974, vol. 19, no. 6, pp. 716–723.

    Article  Google Scholar 

  4. Akatova, T.V. and Akatov, V.V., Elevational distribution of alien plant species in the Western Caucasus, Russ. J. Biol. Invasions, 2019, vol. 10, no. 3, pp. 205–219. https://doi.org/10.1134/S2075111719030044

    Article  Google Scholar 

  5. Alexander, J.M., Lembrechts, J.J., Cavieres, L.A., Daehler, C., Haider, S., Kueffer, Ch., Liu, G., McDougall, K., Milbau, A., Pauchard, A., Rew, L.J., and Seipel, T., Plant invasions into mountains and alpine ecosystems: Current status and future challenges, Alpine Botany, 2016, vol. 126, pp. 89–103. https://doi.org/10.1007/s00035-016-0172-8

    Article  Google Scholar 

  6. Baldwin, R.A., Use of maximum entropy modeling in wildlife research, Entropy, 2009, vol. 11, no. 11, pp. 854–866.

    Article  Google Scholar 

  7. Banerjee, A.K., Mukherjee, A., Guo, W., Ng, W.L., and Huang, Y., Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change, Global Ecology and Conservation, 2019, vol. 20, p. e00800. https://doi.org/10.1016/j.gecco.2019.e00800

    Article  Google Scholar 

  8. BODC (British Oceanographic Data Centre), Polygon dataset of the extent of water bodies from the SeaVoX Salt and Fresh Water Body Gazetteer (v19), MDA. Accessed March 22, 2023.https://doi.org/10.14284/590

  9. Bowen, A.K.M. and Stevens, H.H.M., Temperature, topography, soil characteristics, and NDVI drive habitat preferences of a shade-tolerant invasive grass, Ecol. Evol., 2020, vol. 10, pp. 10785–10797. https://doi.org/10.1002/ece3.6735

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boyce, M.S., Vernier, P.R., Nielsen, S.E., and Schmiegelow, F.K.A., Evaluating resource selection functions, Ecol. Model., 2002, vol. 157, nos. 2–3, pp. 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4

    Article  Google Scholar 

  11. Buhl-Mortensen, L., Burgos, J., Steingrund, P., Buhl-Mortensen, Pål., Olafsdottir, S., and Ragnarsson, S., Vulnerable Marine Ecosystems (VMEs): Coral and Sponge VMEs in Arctic and Sub-Arctic Waters, Distribution and Threats, Copenhagen: Nordisk Ministerråd, 2019. https://doi.org/10.13140/RG.2.2.13159.50084

  12. Chadaeva, V., Tsepkova, N., Pshegusov, R., Stepanyan, E., Zhashuev, A., Maremkulova, A., and Khanov, Z., Invasive species in the grasslands of the Central Caucasus, Issue BIO Web of Conferences, 2021, vol. 35, p. 00007. https://doi.org/10.1051/bioconf/20213500007

  13. Chadaeva, V.A., Shkhagapsoev, S.Kh., Tsepkova, N.L., and Shkhagapsoeva, K.A., Materials for the blacklist of the Central Caucasus flora (within the Kabardino-Balkar Republic): Part II, Russ. J. Biol. Invasions, 2019, vol. 10, no. 3, pp. 269–281. https://doi.org/10.1134/S2075111719030056

    Article  Google Scholar 

  14. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., and Gerlitz, L., System for Automated Geoscientic Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 2015, vol. 8, pp. 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

    Article  Google Scholar 

  15. Cunze, S., Leiblein-Wild, M., and Tackenberg, O., Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change, ISRN Ecol., 2013, p. 610126. https://doi.org/10.1155/2013/610126

  16. Daget, P., Ahdali, L., and David, P., Mediterranean bioclimate and its variation in the Palaearctic region, in Mediterranean-Type Ecosystems, A Data Source Book, Dordrecht: Kluwer Academic Publishers, 1988, pp. 139–148.

    Google Scholar 

  17. Dgebuadze, Yu.Yu., Invasions of alien species in Holarctic: Some results and perspective of investigations, Russ. J. Biol. Invasions, 2014, vol. 5, no. 2, pp. 61–64. https://doi.org/10.1134/S2075111714020039

    Article  Google Scholar 

  18. Egoshin, A.V., Modeling of spatial distribution of adventive species on the territory of Big Sochi, European Geographical Studies, 2015, vol. 8, no. 4, pp. 175–180.

    Google Scholar 

  19. Egoshin, A.V., Alien species of the South of the Russian Black Sea Coast, their bioclimatic and ecological-geographical requirements, Vestnik Rossiiskogo Universiteta Druzhby Narodov. Seriya: Ekologiya i Bezopasnost’ Zhiznedeyatel’nosti, 2016, no. 1, pp. 7–17.

  20. Egoshin, A.V., Predicting the impact of climate change on the spatial distribution of the alien component of the flora in the south of the Black Sea coast of Krasnodar Territory, Ekosistemy, 2021, no. 26, pp. 23–32.

  21. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., et al., Novel methods improve prediction of species’ distributions from occurrence data, Ecography, 2006, vol. 29, iss. 2, pp. 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  22. ENVIREM (Environmental rasters for ecological modeling). https://envirem.github.io/. Accessed March 12, 2023.

  23. Essl, F., Dullinger, S., and Kleinbauer, I., Changes in the spatiotemporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria, Preslia, 2009, vol. 81, no. 2, pp. 119–133.

    Google Scholar 

  24. Essl, F., Biró, K., Brandes, D., Broennimann, O., Bullock, J., Chapman, D., Chauvel, B., Dullinger, S., Fumanal, B., Guisan, A., et al., Biological Flora of the British Isles: Ambrosia artemisiifolia, J. Ecol., 2015, vol. 103, pp. 1069–1098. https://doi.org/10.1111/1365-2745.12424

    Article  Google Scholar 

  25. Fayvush, G.M. and Tamanyan, K.G., On the distribution of some invasive and expansive plant species in Armenia and the Caucasus, Takhtajania, 2011, no. 1, pp. 181–185.

  26. Fayvush, G.M., Aleksanyan, A.S., and Hovhannisyan, H.I., Invasion vectors and distribution of some invasive plant species in Armenia, Russ. J. Biol. Invasions, 2022, vol. 13, no. 3, pp. 350–360. https://doi.org/10.1134/S2075111722030043

    Article  Google Scholar 

  27. Fielding, A.H., and Bell, J.F., A review of methods for the assessment of prediction errors in conservation presence/absence models, Environ. Conserv., 1997, vol. 10324, pp. 38–49. https://doi.org/10.1017/S0376892997000088

    Article  Google Scholar 

  28. GBIF (Global Biodiversity Information Facility). https://www.gbif.org/. Accessed March 16, 2023.https://doi.org/10.15468/dl.vmw98m

  29. Geiger, R., Überarbeitete Neuausgabe von Geiger, R.: Köppen-Geiger / Klima der Erde (Wandkarte 1:16 Mill.), Gotha: Klett-Perthes, 1961.

  30. Gentili, R., Gilardelli, F., Ciappetta, S., Ghiani, A., and Citterio, S., Inducing competition: Intensive grassland seeding to control Ambrosia artemisiifolia, Weed Res., 2015, vol. 55, no. 3, pp. 278–288. https://doi.org/10.1111/wre.12143

    Article  Google Scholar 

  31. Glover-Kapfer, P., A Training Manual for Habitat Suitability and Connectivity Modeling Using Tigers (Panthera tigris) in Bhutan as Example, Technical Report, Bhutan: WWF, 2015.

  32. Grossgeim, A.A., Rastitel’nyi pokrov Kavkaza (Vegetation Cover of the Caucasus), Moscow: Detgiz, 1948.

  33. Gulisashvili, V.Z., Makhatadze, L.B., and Prilipko, L.I., Rastitel’nost’ Kavkaza (Vegetation of the Caucasus), Moscow: Nauka, 1975.

  34. Hijmans, R.J., Phillips, S.J., Leathwick, J., and Elith, J., Dismo: Species Distribution Modeling, R package version 1.3-3, 2017. CRAN.R-project.org/package=dismo. Accessed March 16, 2023.

  35. Komori, O., and Eguchi, Sh., β-Maxent, Statistical Methods for Imbalanced Data in Ecological and Biological Studies, 2019, pp. 27–33. https://doi.org/10.1007/978-4-431-55570-4_3

  36. Komzha, A.L. and Popov, K.P., New data on the adventive flora of North Ossetia, Bot. Zh., 1990, vol. 75, no. 1, pp. 108–110.

    Google Scholar 

  37. Köppen, W.P., Das geographische System der Klimate: Mit 14 Textfiguren, Berlin: Borntraeger, 1936.

    Google Scholar 

  38. Lamsal, P., Kumar, L., Aryal, A., and Atreya, K., Invasive alien plant species dynamics in the Himalayan region under climate change, AMBIO. A Journal of the Human Environment, 2018, vol. 47, no. 6, pp. 697–710. https://doi.org/10.1007/s13280-018-1017-z

    Article  Google Scholar 

  39. Lange, S., and Büchner, M., ISIMIP3b bias-adjusted atmospheric climate input data (v1.1), ISIMIP Repository, 2020. Accessed February 12, 2023.https://doi.org/10.48364/ISIMIP.842396.1

  40. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and Levrard, B.A., A long-term numerical solution for the insolation quantities of the earth, Astron. Astrophys., 2004, vol. 428, no. 1, pp. 261–285. https://doi.org/10.1051/0004-6361:20041335

    Article  Google Scholar 

  41. Luchinskii, S.I. and Makeev, A.V., Ambrosia artemisiifolia weed in sunflower crops, Nauchnyi Zhurnal Kubanskogo Gos. Agrar. Univ., 2011, no. 69 (05), pp. 179–187.

  42. McCoy, J., Johnston, K., Kopp, S., Borup, B., Willison, J., and Payne, B., Using ArcGIS Spatial Analyst, Redlands: ESRI Press, 2001.

    Google Scholar 

  43. Meehl, G.A., Senior, C.A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R.J., Taylor, K.E., and Schlund, M., Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models, Sci. Adv., 2020, vol. 6, p. eaba1981. https://doi.org/10.1126/sciadv.aba1981

  44. Milakovic, I., Fiedler, K., and Karrer, G., Management of roadside populations of invasive Ambrosia artemisiifolia by mowing, Weed Res., 2014, vol. 54, pp. 256–264. https://doi.org/10.1111/wre.12074

    Article  Google Scholar 

  45. Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., and Anderson, R.P., ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models, Methods in Ecology and Evolution, 2014, vol. 5, no. 11, pp. 1198–1205. https://doi.org/10.1111/2041-210X.12261

    Article  Google Scholar 

  46. NextGIS, Vector layers and ready-to-go GIS projects based on OSM in ESRI Shape, Geodatabase. https://data.nextgis.com. Accessed February 12, 2022.

  47. Omel’yanenko, T.Z. and Bagrikova, N.A., Morphological variability of Ambrosia artemisiifolia in the conditions of the Piedmont Crimea, Ekosistemy, 2022, no. 30, pp. 84–94. https://doi.org/10.13140/RG.2.2.35284.48002

  48. Ortiz-Urbina, E., Diaz-Balteiro, L., and Iglesias Merchan, C., Influence of anthropogenic noise for predicting Cinereous vulture nest distribution, Sustainability, 2020, vol. 12, no. 2, p. 503. https://doi.org/10.3390/su12020503

    Article  Google Scholar 

  49. Osorio-Olvera, L., Lira-Noriega, A., Soberón, J., Peterson, A.T., Falconi, M., Contreras-Díaz, R.G., Martínez-Meyer, E., Barve, V., and Barve, N., NTBOX: An R package with graphical user interface for modelling and evaluating multidimensional ecological niches, Methods in Ecology and Evolution, 2020, vol. 11, no. 10, pp. 1199–1206. https://doi.org/10.1111/2041-210X.13452

    Article  Google Scholar 

  50. Pauchard, A., Milbau, A., Albihn, A., Alexander, J., Burgess, T., Daehler, C., Englund, G., Essl, F., et al., Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: New challenges for ecology and conservation, Biol. Invasions, 2016, vol. 18, no. 2, pp. 345–353.

    Article  Google Scholar 

  51. Peel, M., Finlayson, B., and Mcmahon, Th., Updated World Map of the Koppen-Geiger Climate Classification, HESSD, 2007, vol. 11, no. 5, pp. 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  52. Peterson, A., and Soberón, J., Species distribution modeling and ecological niche modeling: Getting the concepts right, Natureza e Conservação, 2012, vol. 10, no. 2, pp. 1–6. https://doi.org/10.4322/natcon.2012.019

    Article  Google Scholar 

  53. Petrosyan, V., Osipov, F., Bobrov, V., Dergunova, N., Omelchenko, A., Varshavskiy, A., Danielyan, F., and Arakelyan, M., Species distribution models and niche partitioning among unisexual Darevskia dahli and its parental bisexual (D. portschinskii, D. mixta) rock lizards in the Caucasus, Mathematics, 2020, vol. 8, p. 1325. https://doi.org/10.3390/math8081329

    Article  Google Scholar 

  54. Petryna, L., Moora, M., Nuñes, C.O., Cantero, J.J., and Zobel, M., Are invaders disturbance-limited? Conservation of mountain grasslands in Central Argentina, Applied Vegetation Science, 2002, vol. 2, pp. 195–202.

    Article  Google Scholar 

  55. Phillips, S.J., and Dudík, M., Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation, Ecography, 2008, vol. 31, no. 2, pp. 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  56. Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., and Blair, M.E., Opening the black box: An open-source release of Maxent, Ecography, 2017, vol. 40, no. 7, pp. 887–893. https://doi.org/10.1111/ecog.03049

    Article  Google Scholar 

  57. Pickering, C.M., Mount, A., Wichmann, M.C., and Bullock, J.M., Estimating human-mediated dispersal of seeds within an Australian protected area, Biol. Invasions, 2011, vol. 13, pp. 1869–1880.

    Article  Google Scholar 

  58. Pollnac, F., Seipel, T., Repath, Ch., and Rew, L.J., Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem, Biol. Invasions, 2012, vol. 14, pp. 1753–1763. https://doi.org/10.1007/s10530-012-0188-y

    Article  Google Scholar 

  59. Pshegusov, R., Tembotova, F., Chadaeva, V., Sablirova, Y., Mollaeva, M., and Akhomgotov, A., Ecological niche modeling of the main forest-forming species in the Caucasus, For. Ecosyst., 2022, vol. 9, p. 100019. https://doi.org/10.1016/j.fecs.2022.100019

    Article  Google Scholar 

  60. Pshegusov, R.Kh. and Chadaeva, V.A., Ecological niche modeling of Galinsoga Ruiz et Pav. species in the native and Caucasian part of the invasive ranges, Russ. J. Biol. Invasions, 2022, vol. 13, no. 2, pp. 107–122. https://doi.org/10.1134/S2075111722020102

    Article  Google Scholar 

  61. Pshegusov, R.Kh., Chadaeva, V.A., and Komzha, A.L., Spatial modeling of the range and long-term climatogenic dynamics of Ambrosia L. species in the Caucasus, Russ. J. Biol. Invasions, 2020, vol. 11, no. 1, pp. 74–84. https://doi.org/10.1134/S2075111720010105

    Article  Google Scholar 

  62. Reznik, S.Ya., Factors determining the boundaries of habitats and population density of Ambrosia artemisiifolia L. (Asteraceae) and the ambrosia leaf beetle Zygogramma suturalis F. (Coleoptera, Chrysomelidae), Vestn. Zashch. Rast., 2009, no. 2, pp. 20–28.

  63. Riley, Sh.J., Degloria, S.D., and Elliot, S.D., A terrain ruggedness index that quantifies topographic heterogeneity, Int. J. Sci., 1999, vol. 5, nos. 1–4, pp. 23–27.

    Google Scholar 

  64. Samye opasnye invazionnye vidy Rossii (TOP 100) (The Most Dangerous Invasive Species in Russia (TOP 100)), Dgebuadze, Yu.Yu., Petrosyan, V.G., and Khlyap, L.A., Eds., Moscow: KMK, 2018.

    Google Scholar 

  65. Sellar, A.A., Jones, C.G., Mulcahy, J.P., Tang, Y., Yool, A., Wiltshire, A., O’Connor, F.M., Stringer, M., Hill, R., Palmieri, J., et al., UKESM1: Description and evaluation of the U.K. Earth System Model, Journal of Advances in Modeling Earth Systems, 2019, vol. 11, pp. 4513–4558. https://doi.org/10.1029/2019MS001739

    Article  Google Scholar 

  66. Sharma, H., Dhakal, S., Bhusal, K., Dhakal, H., Gautam, R., Joshi, A., Rana, D., Ghimire, M., and Ghimire, S., Factors influencing the potential distribution of globally endangered Egyptian Vulture nesting habitat in Nepal, Animals, 2023, vol. 13, no. 4, pp. 1–12. https://doi.org/10.3390/ani13040633

    Article  Google Scholar 

  67. Shiffers, E.V., Rastitel’nost’ Severnogo Kavkaza i ego prirodnye kormovye ugod’ya (Vegetation of the North Caucasus and its Natural Fodder Lands), Moscow; Leningrad: Nauka, 1953.

  68. Shkhagapsoev, S.Kh., Chadaeva, V.A., Tsepkova, N.L., and Shkhagapsoeva, K.A., Materials for the blacklist of the Central Caucasus flora (Kabardino-Balkar Republic), Russ. J. Biol. Invasions, 2019, vol. 9, no. 4, pp. 384–391. https://doi.org/10.1134/S2075111718040124

  69. Simões, M.V.P., and Peterson, A., Importance of biotic predictors in estimation of potential invasive areas: the example of the tortoise beetle Eurypedus nigrosignatus in Hispaniola, PeerJ, 2018, vol. 6, p. e6052. https://doi.org/10.7717/peerj.6052

    Article  PubMed  PubMed Central  Google Scholar 

  70. Skalova, H., Guo, W., Moravcová, L., and Pyšek, P., Suppressive potential of some perennial grasses on the growth and development of Ambrosia artemisiifolia, Management of Biological Invasions, 2019, vol. 10, pp. 359–376. https://doi.org/10.3391/mbi.2019.10.2.10

    Article  Google Scholar 

  71. Soberón, J., and Peterson, A., Interpretation of models of fundamental ecological niches and species’ distributional areas, Biodiversity Informatics, 2005, vol. 2, pp. 1–10. https://doi.org/10.17161/bi.v2i0.4

    Article  Google Scholar 

  72. Song, X.-J., Liu, G., Qian, Z.-Q., and Zhu, Zh.-H., Niche Filling dynamics of ragweed (Ambrosia artemisiifolia L.) during global invasion, Plants, 2023, vol. 12, p. 1313. https://doi.org/10.3390/plants12061313

    Article  PubMed  PubMed Central  Google Scholar 

  73. SpatialECO, Spatial analysis and modelling of ecological systems. https://github.com/jeffreyevans/spatialEco. Accessed February 15, 2023.

  74. Tennekes, M., tmap: Thematic Maps in R, Journal of Statistical Software, 2018, vol. 84, no. 6, pp. 1–39. https://doi.org/10.18637/jss.v084.i06

    Article  Google Scholar 

  75. Tian, Zh., Ma, Ch., Zhao, Ch., Zhang, Y., Gao, X., and Tian, Zh., Heat wave event facilitates defensive responses in invasive C3 plant Ambrosia artemisiifolia L. under elevated CO2 concentration to the detriment of Ophraella communa, Front. Plant Sci., 2022, vol. 13, p. 907764. https://doi.org/10.3389/fpls.2022.907764

    Article  PubMed  PubMed Central  Google Scholar 

  76. Title, P.O. and Bemmels, J.B., ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling, Ecography, 2018, vol. 41, no. 2, pp. 291–307. https://doi.org/10.1111/ecog.02880

    Article  Google Scholar 

  77. Tytar, V., Associations between habitat quality and body size in the Carpathian-Podolian land snail Vestia turgida (Gastropoda, Clausiliidae): Species distribution model selection and assessment of performance, Zoodiversity, 2021, vol. 55, pp. 25–40.

    Article  Google Scholar 

  78. Vignali, S., Lörcher, F., Hegglin, D., Arlettaz, R., and Braunisch, V., Modelling the habitat selection of the bearded vulture to predict areas of potential conflict with wind energy development in the Swiss Alps, Global Ecology and Conservation, 2021, vol. 25, p. e01405. https://doi.org/10.1016/j.gecco.2020.e01405

    Article  Google Scholar 

  79. Vladimirov, V., Valkova, M., Maneva, Sv., and Senka, M., Suppressive potential of some perennial grasses on the growth and development of Ambrosia artemisiifolia, Bulgarian Journal of Agricultural Science, 2017, vol. 23, pp. 274–279.

    Google Scholar 

  80. WorldClim, WorldClim climate data base. https://worldclim.com/version2. Accessed February 15, 2023.

  81. Yan, H., Feng, L., Zhao, Y., Feng, L., Wu, D., and Zhu, Ch., Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt, Global Ecology and Conservation, 2019, vol. 21, p. e00856. https://doi.org/10.1016/j.gecco.2019.e00856

    Article  Google Scholar 

  82. Zhao, W., Liu, T., Sun, M., Wang, H., Liu, X., Su, P., Rapid monitoring of Ambrosia artemisiifolia in semi-arid regions based on ecological convergence and phylogenetic relationships, Front. Ecol. Evol., 2022, vol. 10, p. 926990. https://doi.org/10.3389/fevo.2022.926990

    Article  Google Scholar 

Download references

Funding

This research was carried out within the framework of state assignment no. 075-00347-19-00 on the topic “Patterns of Spatiotemporal Dynamics of Meadow and Forest Ecosystems in Mountainous Areas (Russian Western and Central Caucasus).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. H. Pshegusov or V. A. Chadaeva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshegusov, R.H., Chadaeva, V.A. Integrated Approach to Accounting for Environmental Factors in Models of the Current Distribution and Climatic Dynamics of Ambrosia artemisiifolia L. in the Caucasus. Russ J Biol Invasions 14, 607–620 (2023). https://doi.org/10.1134/S2075111723040136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111723040136

Keywords:

Navigation