Skip to main content
Log in

Changes in a Number of Characteristics of Common Dandelion (Taraxacum officinale Wigg) during Invasion into Anthropogenically Disturbed Areas of the Highlands

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

Chromosome count, plant height, number of inflorescences per plant, number of seeds per inflorescence, seed weight, germination, and germination energy of plant seeds growing at altitudes of 200, 600, 1300, 2050, 2700, and 3050 m above sea level (Central Caucasus) were studied. The studies were conducted in 2013, 2014, and 2018 at the same sampling points. Chromosome counts were determined by the cytogenetic method. In the T. officinale species, highly polyploid specimens predominate in populations when invading anthropogenically disturbed territories of the highlands. Polyploid plants are larger in size compared to their low ploidy predecessors, but in high-altitude, selection is aimed at preserving smaller phenotypes. The increase in seed mass characteristic of polyploid plants was supported by natural selection and in conditions of highlands. Germination and germination energy did not change with the increase in altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.

REFERENCES

  1. Akatova, T.V. and Akatov, V.V., Elevational distribution of alien plant species in the Western Caucasus, Russ. J. Biol. Invasions, 2019, vol. 10, no. 3, pp. 205–219.

    Article  Google Scholar 

  2. Ayana, A. and Bekele, E., Geographical patterns of morphological variation in Sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea: Quantitative characters, Euphytica, 2000, vol. 115, pp. 91–104.

    Article  Google Scholar 

  3. Bacelara, E., Moutinho-Pereira, J., Ferreira, H., and Correia, C., Enhanced ultraviolet-B radiation affect growth, yield and physiological processes on triticale plants, Proc. Environ. Sci., 2015, vol. 29, pp. 219–220.

    Article  Google Scholar 

  4. Beest, M., Le Roux, J.J., Richardson, D.M., Brysting, A.K., Suda, J., Kubesová, M., and Pysek, P., The more the better? The role of polyploidy in facilitating plant invasions, Ann. Bot., 2012, vol. 109, pp. 19–45.

    Article  Google Scholar 

  5. Bernal, M., Llorens, L., Julkunen-Tiitto, R., Badosa, J., and Verdaguer, D., Altitudinal and seasonal changes of phenolic compounds in Buxus sempervirens leaves and cuticles, Plant Physiol. Biochem., 2013, vol. 70, pp. 471–482.

    Article  CAS  PubMed  Google Scholar 

  6. Blionis, G.J. and Vokou, D., Structural and functional divergence of Campanula spatulata subspecies on Mt Olympos (Greece), Plant Syst. Evol., 2002, vol. 232, pp. 89–105.

    Article  Google Scholar 

  7. Blionis, G.J., Halley, J.M., and Vokou, D., Flowering phenology of Campanula on Mt Olynipos, Greece, Ecography, 2001, vol. 24, pp. 696–706.

    Article  Google Scholar 

  8. Boulli, A., Baaziz, M., and M’Hirit, O., Polymorphism of natural populations of Pinus halepensis Mill. in Morocco as revealed by morphological characters, Euphytica, 2001, vol. 119, pp. 309–316.

    Article  Google Scholar 

  9. Bowman, W.D. and Damm, M., Causes and consequences of alpine vascular plant diversity in the Rocky Mountains, in Mountain Biodiversity, a Global Assessment, Körner, C. and Spehn, E.M., Eds., Boca Raton: Parthenon, 2002, pp. 35–47.

    Google Scholar 

  10. Bu, H., Chen, X., Xu, X., Liu, K., Jia, P., and Du, G., Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet plateau, Plant Ecol., 2007, vol. 191, pp. 127–149.

    Article  Google Scholar 

  11. Chadaeva, V.A., Shhagapsoev, S.H., Tsepkova, N.L., and Shhagapsoeva, K.A., Materials for the Blacklist of the Central Caucasus flora (Kabardino-Balkar Republic): Part II, Russ. J. Biol. Invasions, 2019, vol. 10, no. 3, pp. 269–281.

    Article  Google Scholar 

  12. Cordell, S., Goldstein, G., Mueller-Dombois, D., Webb, D., and Vitousek, P.M., Physiological and morphological in Metrosideros variation polymorpha, Physiological a dominant Hawaiian tree species, along an altitudinal gradient: The role of phenotypic plasticity, Oecologia, 2012, vol. 113, pp. 188–196.

    Article  Google Scholar 

  13. Dzhambetova, P.M., Reutova, N.V., and Sitnikov, M.N., Influence of oil pollution on morphology and cytogenetic characteristics of plants, Ekol. Genet., 2005, vol. 3, no. 4, pp. 5–10.

    Article  CAS  Google Scholar 

  14. Evseeva, T.I., Geras’kin, S.A., Frolova, N.P., and Khramova, E.S. The use of natural Taraxacum officinale Wigg. populations for assessing the state of technogenically disturbed areas, Russ. J. Ecol., 2002, vol. 33, no. 5, pp. 370–373.

    Article  Google Scholar 

  15. Fabbro, Th. and Körner, Ch., Altitudinal differences in flower traits and reproductive allocation, Flora, 2004, vol. 199, pp. 70–81.

    Article  Google Scholar 

  16. Fernandez-Pascual, E., Carta, A., Mondoni, A., et al., The seed germination spectrum of alpine plants: A global metaanalysis, New Phytol., 2021, vol. 229, pp. 3573–3586.

    Article  CAS  PubMed  Google Scholar 

  17. Grytnes, J.A., Species-richness patterns of vascular plants along seven altitudinal transects in Norway, Ecography, 2003, vol. 26, pp. 291–300.

    Article  Google Scholar 

  18. Guo, H., Mazer, S.J., and Du, G., Geographic variation in seed mass within and among nine species of Pedicularis (Orobanchaceae): Effects of elevation, plant size and seed number per fruit, J. Ecol., 2010, vol. 98, pp. 1232–1242.

    Article  Google Scholar 

  19. Herrera, J., Flower size variation in Rosmarinus officinalis: Individuals, populations and habitats, Ann. Bot., 2005, vol. 95, pp. 431–437.

    Article  PubMed  Google Scholar 

  20. Holm, S.O., Reproductive patterns of Betula pendula and B. pubescens Coll. along a regional altitudinal gradient in northern Sweden, Ecography, 1994, vol. 17, pp. 60–72.

    Article  Google Scholar 

  21. Jansen, M.A.K., Gaba, V., and Greenberg, B.M., Higher plants and UV-B radiation: Balancing, damage, repair and acclimation, Trends Plant Sci., 1998, vol. 3, pp. 131–135.

    Article  Google Scholar 

  22. Ji, H., Xiao, L., Xia, Y., Song, H., Liu, B., Cao, W., Zhu, Y., and Liu, L., Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat, Agric. For. Meteorol., 2017, vol. 243, pp. 33–42.

    Article  Google Scholar 

  23. Kiełtyk, P., Patterns of floral allocation along an elevation gradient: Variation in Senecio subalpinus growing in the Tatra Mountains, Alp. Bot., 2021, vol. 131, pp. 117–124.

    Article  Google Scholar 

  24. Körner Ch. Alpine plant diversity: A global survey and functional interpretations, in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences, Chapin, F.S. and Körner, C., Eds., Ecological Studies, vol. 113, Berlin: Springer, 1995, pp. 45–62.

  25. Körner, Ch., and Spehn, E.M., Mountain Biodiversity, a Global Assessment, Boca Raton: Parthenon, 2002.

    Google Scholar 

  26. Körner, Ch., Farquhar, G.D., and Roksandic, Z., A global survey of carbon isotope discrimination in plants from high altitude, Oecologia, 1988, vol. 74, pp. 623–632.

    Article  PubMed  Google Scholar 

  27. Körner, Ch., Neumayer, M., Pelaez Menendez-Riedl, S., and Smeets-Scheel, A., Functional morphology of mountain plants, Flora, 1989, vol. 182, nos. 5–6, pp. 353–383.

    Article  Google Scholar 

  28. Körner, Ch., Farquhar, G.D., and Wong, S.C., Carbon isotope discrimination by plants follows latitudinal and altitudinal trends, Oecologia, 1991, vol. 88, pp. 30–40.

    Article  PubMed  Google Scholar 

  29. Liua, B., Liua, X., Li, Ya.-Sh., and Herbert, S.J., Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean, Field Crops Res., 2013, no. 154, pp. 158–163.

  30. Lord, J., Variation in Festuca-novae-zelandiae (Hack) Cockayne germination behaviour with altitude of seed source, New Zealand Journal of Botany, 1994, vol. 32, pp. 227–235.

    Article  Google Scholar 

  31. Madlung, A., Polyploidy and its effect on evolutionary success: Old questions revisited with new tools, Heredity, 2013, vol. 110, pp. 99–104.

    Article  CAS  PubMed  Google Scholar 

  32. Mandáková, T. and Lysak, M.A., Post-polyploid diploidization and diversification through dysploid changes, Curr. Opin. Plant Biol., 2018, vol. 42, pp. 55–65.

    Article  PubMed  Google Scholar 

  33. Mariko, S., Koizumi, H., Suzuki, J., and Furukawa, A., Altitudinal variations in germination and growth-responses of Reynoutria japonica populations on Mt Fuji to a controlled thermal environment, Ecol. Res., 1993, vol. 8, pp. 27–34.

    Article  Google Scholar 

  34. Mollaeva, M.Z. and Tembotova, F.A., The pollen quality and anomalies of the Scots Pine in the Central Caucasus, Biol. Bull. Russ. Acad. Sci., 20022, vol. 49, no. 3, pp. 169–174.

  35. Nakhutsrishvili, G.Sh. and Gamtsemlidze, Z.G., Zhizn’ rastenii v ekstremal’nykh usloviyakh vysokogorii (Plant Life in Extreme Conditions of High Mountains), Leningrad: Nauka, 1984.

  36. Oyama, K., Geographic differentiation among populations of Arabis serrata Fr. and Sav. (Brassicaceae), J. Plant Res., 1993, vol. 106, pp. 15–24.

    Article  Google Scholar 

  37. Parisod, C. and Besnard, G., Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae), Mol. Ecol., 2007, vol. 16, pp. 2755–2767.

    Article  PubMed  Google Scholar 

  38. Parisod, C., Holderegger, R., and Brochmann, C., Evolutionary consequences of Autopolyploidy, New Phytol., 2010, vol. 186, pp. 5–17.

    Article  CAS  PubMed  Google Scholar 

  39. Piano, E., Pecetti, L., and Carroni, A.M., Climatic adaptation in subterranean clover populations, Euphytica, 1996, vol. 92, pp. 39–44.

    Article  Google Scholar 

  40. Pozolotina, V.N., Antonova, E.V., Bezel’, V.S., Zhuikova, O.A., and Severyukhina, O.A., Pathways of adaptation of common dandelion cenopopulations to long-term chemical and radiation influences, Russ. J. Ecol., 2006, vol. 37, no. 6, pp. 402–407.

    Article  CAS  Google Scholar 

  41. Rathorea, N., Thakura, D., and Chawlaa, A., Seasonal variations coupled with elevation gradient drives significant changes in eco-physiological and biogeochemical traits of a high altitude evergreen broadleaf shrub, Rhododendron anthopogon, Plant Physiol. Biochem., 2018, vol. 132, pp. 708–719.

    Article  Google Scholar 

  42. Rau, W. and Hofmann, H., Sensitivity to UV-B of plants growing in different altitudes in the Alps, J. Plant Physiol., 1996, vol. 148, pp. 21–25.

    Article  CAS  Google Scholar 

  43. Reutova, N.V., Dreeva, F.R., and Reutova, T.V., Effect of high mountain environment on morphology and genetic characteristics of waybread (Plantago major L.), Izv. Kabard.-Balkar. Nauchn. Tsentra Ross. Akad. Nauk, 2015, vol. 64, no. 2, pp. 252–257.

    Google Scholar 

  44. Reutova, N., Dzhambetova, P., and Abilev, S., Species of wild flora as indicators of the environmental genotoxicity, Ann. Ser. Hist. Nat., 2018, vol. 28, no. 2, pp. 137–146.

    Google Scholar 

  45. Savinov, A.B., The analysis of phenotypic variation in common dandelion (Taraxacum officinale Wigg.) from biotopes with different levels of technogenic pollution, Ekologiya, 1998, no. 5, pp. 362–365.

  46. Shi, Sh.-B., Zhu, W.-Ya., Li, H.-M., Zhou, D.-W., Han, F., Zhao, X.-Q., and Tang, Ya.-H., Photosynthesis of Saussurea superba and Gentiana straminea is not reduced after long-term enhancement of UV-B radiation, Environ. Exp. Bot., 2004, vol. 51, pp. 75–83.

    Article  CAS  Google Scholar 

  47. Shhagapsoev, S.H., Chadaeva, V.A., Tsepkova, N.L., and Shhagapsoeva, K.A., Materials for the Blacklist of the Central Caucasus Flora (for the Kabardino-Balkar Republic), Russ. J. Biol. Invasions, 2018, vol. 9, no. 4, pp. 384–391.

    Article  Google Scholar 

  48. Shimono, A., Zhou, HK., Shen, H.H., Hirota, M., Ohtsuka, T., and Tang, Y.H., Patterns of plant diversity at high altitudes on the Qinghai-Tibetan Plateau, J. Plant Ecol. 2010, vol. 3, pp. 1–7.

    Article  Google Scholar 

  49. Shimono, H., Okada, M., Kanda, E., and Arakawa, I., Low temperature-induced sterility in rice: Evidence for the effects of temperature before panicle initiation, Field Crops Res., 2007, vol. 101, pp. 221–231.

    Article  Google Scholar 

  50. Soltis, D.E., Segovia-Salcedo, M.C., Jordon-Thaden, I., Majure, L., Miles, N.M., Mavrodiev, E.V., Mei, W., Cortez, M.B., Soltis, P.S., and Gitzendanner, M.A., Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011), New Phytol., 2014, vol. 202, pp. 1105–1117.

    Article  PubMed  Google Scholar 

  51. Soltis, P.S., Marchant, D.B., Van de Peer, Y., and Soltis, D.E., Polyploidy and genome evolution in plants, Curr. Opin. Genet. Dev., 2015, vol. 35, pp. 119–125.

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi, K., Effects of wind and thermal conditions on timberline formation in central Japan: A lattice model, Ecol. Res., 2014, vol. 29, pp. 121–131.

    Article  Google Scholar 

  53. Van de Peer, Y., Mizrachi, E., and Marchal, K., The evolutionary significance of polyploidy, Nat. Rev. Genet., 2017, vol. 18, pp. 411–424.

    Article  CAS  PubMed  Google Scholar 

  54. Xiao, L., Liu, L., Asseng, S., Tang, L., Liu, B., Cao, W., and Zhu, Ya., Estimating spring frost and its impact on yield across winter wheat in China, Agric. For. Meteorol., 2018, vol. 260–261, no. 15, pp. 154–164.

    Article  Google Scholar 

  55. Zhu, P. and Yang, L., Ambient UV-B radiation inhibits the growth and physiology of Brassica napus L. on the Qinghai-Tibetan plateau, Field Crops Res., 2015, vol. 171, pp. 79–85.

    Article  Google Scholar 

  56. Ziska, L.H., Teramura, A.H., and Sullivan, J.H., Physiological sensitivity of plants along an elevational gradient to UV-B radiation, Am. J. Bot., 1992, vol. 79, pp. 863–871.

    Google Scholar 

Download references

Funding

This work was carried out within the framework of the topic “Study of the Dynamics of the Composition of Natural Waters of the North Caucasus Depending on the Altitudinal Zonality and Bioindication of the Influence of Highland Conditions on Living Organisms.” Registration number AAAA-A19-119011890119-7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Reutova or P. M. Dzhambetova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reutova, N.V., Mallaeva, M.B., Dreeva, F.R. et al. Changes in a Number of Characteristics of Common Dandelion (Taraxacum officinale Wigg) during Invasion into Anthropogenically Disturbed Areas of the Highlands. Russ J Biol Invasions 14, 389–397 (2023). https://doi.org/10.1134/S2075111723030153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111723030153

Keywords:

Navigation