Skip to main content
Log in

The Most Dangerous Invasive Near-Water Mammals in Russia: Ensemble Models of Spatial Distribution

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

The potential ranges of three near-water (hereafter, semiaquatic) mammals included in the list of the 100 most dangerous invasive species of Russia (Сanadian beaver, muskrat, American mink) are presented. Maps of suitable habitats of species were created by ensemble modeling of spatial distribution of species (eSDM) on the basis of global species occurrence records in the native and invasive range and bioclimatic variables characterizing the current climate. An estimate of the effectiveness of constructing ensemble models in comparison with individual models (iSDM) is given. The results of analysis of consequences of invasions of semiaquatic mammals are presented and the features of control of number and limitation of their distribution in the future on the territory of Russia are considered. The patterns of formation of the invasive part of the range of alien semiaquatic mammals are summarized and suitable regions for their future invasions are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Aguiló-Gisbert, J., Padilla-Blanco, M., Lizana, V., Maiques, E., Muñoz-Baquero, M., Chillida-Martínez, E., Cardells, J., and Rubio-Guerri, C., First description of SARS-CoV-2 infection in two feral American mink (Neovison vison) caught in the wild, Animals (Basel), 2021, vol. 11, no. 5, p. 1422. https://doi.org/10.3390/ani11051422

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., and Anderson, R.P., Silva DPSpThin: An R package for spatial thinning of species occurrence records for use in ecological niche models, Ecography, 2015, vol. 38, no. 5, pp. 541–545. https://doi.org/10.1111/ecog.01132

    Article  Google Scholar 

  3. Alabia, I.D., Saitoh, S.I., Igarashi, H., Ishikawa, Y., Usui, N., Kamachi, M., Awaji, T., and Seito, M., Ensemble squid habitat model using three-dimensional ocean data, ICES J. Mar. Sci., 2016, vol. 73, no. 7, pp. 1863–1874.

    Article  Google Scholar 

  4. Allouche, O., Tsoar, A., and Kadmon, R., Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution models, J. Appl. Ecol., 2006, vol. 43, no. 6, pp. 1223–1232.

  5. Argunov, A.V., Alien species of the mammalian fauna in Yakutia, Russ. J. Biol. Invasions, 2018, vol. 9, no. 4, pp. 313–326.

    Article  Google Scholar 

  6. Beavers in the reserves of the European part of Russia, in Trudy Gosudarstvennogo Prirodnogo Zapovednika Rdeiskii (Proceedings of the State Natural Reserve “Rdeisky”), Zav’yalov, N.A. and Khlyap, L.A., Eds., Velikie Luki: Velikolukskaya Tipografiya, 2018, vol. 4.

  7. Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M., and Courchamp, F., Will climate change promote future invasions?, Global Change Biol., 2013, vol. 19, no. 12, pp. 3740–3748. https://doi.org/10.1111/gcb.12344

    Article  Google Scholar 

  8. Birnbaum, C., NOBANIS—Invasive Alien Species Fact Sheet—Neovison vison, Online Database of the European Network on Invasive Alien Species—NOBANIS. http://www.nobanis.org. Cited June 18, 2018.

  9. Bobrov, V.V., Varshavskii, A.A., and Khlyap, L.A., Chuzherodnye vidy mlekopitayushchikh v ekosistemakh Rossii (Alien Species of Mammals in the Ecosystems of Russia), Dgebuadze, Yu.Yu. and Neronov, V.M., Eds., Moscow: KMK, 2008.

  10. Bonesi, L. and Palazon, S., The American mink in Europe: Status, impacts, and control, Biol. Conserv., 2007, no. 4, pp. 470–483. https://doi.org/10.1016/j.biocon.2006.09.006

  11. Bonesi, L. and Tom, M., Neovison vison Schreber (American mink), in A Handbook of Global Freshwater Invasive Species, Francis, R.A., Ed., London: Earthscan, 2012, рр. 378–390.

    Google Scholar 

  12. Bos, D., Information on measures and related costs in relation to species included on the Union list: Ondatra zibethicus, Technical note prepared by IUCN for the European Commission, 2017. https://circabc.europa.eu/sd/a/7cf3a0bb-8ac3-48be-8e12-12c7783caa3e/-TSSR-2016-003%20Ondatra%20zibethicus.pdf. Cited December 18, 2022.

  13. Boyce, M.S., Vernier, P.R., Nielsen, S.E., and Schmiegelow, F.K., Evaluating resource selection functions, Ecol. Model., 2002, vol. 157, nos. 2–3, pp. 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4

    Article  Google Scholar 

  14. Carlsson, N.O.L., Jeschke, J.M., Holmqvist, N., and Kindberg, J., Long-term data on invaders: When the fox is away, the mink will play, Biol. Invasions, 2010, vol. 12, pp. 633–641. https://doi.org/10.1007/s10530-009-9470-z

    Article  Google Scholar 

  15. CBD (Convention on Biological Diversity) Strategic Plan for Biodiversity (2011–2020) and the Aichi Biodiversity Targets. Report № UNEP/CBD/COP/DEC/X/2, in The Wetland Book, Finlayson, C., Everard, M., Irvine, K., et al., Eds., Dordrecht: Springer, 2010. https://doi.org/10.1007/978-94-007-6172-8_119-2

  16. Chashchukhin, V.A., Ondatra: prichiny i sledstviya biologicheskoi invazii (Muskrat: Causes and Consequences of Biological Invasion), Moscow: KMK, 2007.

  17. Chashchukhin, V.A., Norka amerikanskaya (American Mink), Moscow: KMK, 2009.

  18. Chibyev, V.Yu., Ondatra alasnykh ekosistem Leno-Amginskogo mezhdurech’ya: sistematika, ekologiya, vozdeistvie na alasnye biogeotsenozy, biotekhniya (Muskrat in Alas Ecosystems of the Lena-Amga Interfluve: Systematics, Ecology, Impact on Alas Biogeocenoses, Biotechnology), Yakutsk: Yakutsk. Gos. Univ., 2010.

  19. Chibyev, V.Yu. and Mordosov, I.M., Muskrat in alas ecosystems of the Lena-Amga interfluve: Systematics, ecology, impact on alas biogeocenoses, biotechnology, Vestn. Sev.-Vost. Fed. Iniv. im. M.K. Ammosova, 2006, vol. 3, no. 1, pp. 134–135.

    Google Scholar 

  20. Danilov, P.I., Okhotnich’i zveri Karelii (Hunting Animals of Karelia), Moscow: Nauka, 2005.

    Google Scholar 

  21. Danilov, P.I., Novye vidy mlekopitayushchikh na Evropeiskom Severe Rossii (New Species of Mammals in the European North of Russia), Petrozavodsk: Karel’sk. Nauchn. Tsentr Ross. Akad. Nauk, 2009.

  22. Danilov, P.I., Kan’shiev, V.Ya., and Fedorov, F.V., Rechnye bobry Evropeiskogo Severa Rossii (River Beavers of the European North of Russia), Moscow: Nauka, 2007.

  23. Danilov, P.I., Kan’shiev, V.Ya., and Fedorov, F.V., European (Castor fiber) and Canadian (Castor canadensis) beavers in the North-West of Russia, Zool. Zh., 2008a, vol. 87, no. 3, pp. 348–360.

    Google Scholar 

  24. Danilov, P.I., Fedorov, F.V., and Kan’shiev, V.Ya., The role of some North American animal species in the coastal biocenoses of Karelia, Estestv. Nauki, 2008b, no. 3, pp. 20–24.

  25. Decision adopted by the conference of the parties to the convention on biological diversity, 15/27, Invasive alien species, CBD/COP/DEC/15/27, 19 December 2022, Montreal, Canada. https://www.cbd.int/decisions/cop/?m=cop-15. Cited March 19, 2023.

  26. Dewas, M., Herr, J., Schley, L., Angst, C., Manet, B., Landry, P., and Catusse, M., Recovery and status of native and introduced beavers Castor fiber and Castor canadensis in France and neighboring countries, Mamm. Rev., 2012, vol. 42, pp. 144–165.

    Article  Google Scholar 

  27. ESRI (Environmental Systems Research Institute), ArcGIS Desktop 10.4.1. ESRI, Redlands, California, 2017.

  28. Fedorov, F.V. and Danilov, P.I., Characteristics of the population of the Canadian beaver of the Kostomuksha Reserve, in Bobry v zapovednikakh evropeiskoi chasti Rossii. Trudy gosudarstvennogo prirodnogo zapovednika Rdeiskii (Beavers in the Reserves of the European Part of Russia. Proc. State Nature Reserve “Rdeiskii”), Zav’yalov, N.A. and Khlyap, L.A., Eds., Velikie Luki: Velikolukskaya Tipografiya, 2018, vol. 4, pp. 40–51.

  29. Fick, S.E. and Hijmans, R.J., WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 2017, vol. 37, pp. 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  30. Fomina, A.S., Mazur, O.E., and Pronin, N.M., New data on infestation of muskrat ondatra zibethica by trematoda Quinqueserialis quinqueserialis (Notocotylida: Notocotylidae) in the Selenga River delta, Izv. Irkutsk. Gos. Univ., Ser. Biol. Ekol., 2012, vol. 5, no. 4, pp. 155–158.

    Google Scholar 

  31. GBIF (Global Biodiversity Information Facility). http://www.gbif.org. Cited December 19, 2022.

  32. Golovatin, M.G. and Sokolov, V.A., Distribution of muskrat on the Yamal Peninsula (The Yamal–Nenets Autonomous District), Fauna Urala Sib., 2017, no. 2, pp. 189–191.

  33. Golovnyuk, V.V., Solov’ev, M.Yu., and Popovkina, A.B., Sightings of some vertebrate species at the edges of their ranges at the lower reaches of the Khatanga river (Southeastern Taimyr), Fauna Urala Sib., 2017, no. 2, pp. 48–61.

  34. Guisan, A., Thuiller, W., and Zimmermann, N.E., Habitat Suitability and Distribution Models, Cambridge: Cambridge Univ. Press, 2017. https://doi.org/10.1017/9781139028271

    Book  Google Scholar 

  35. Halvorsen, R., Mazzoni, S., Dirksen, J., Nasset, E., Gobakken, T., and Ohlson, M., How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?, Ecol. Modell., 2016, no. 328, pp. 108–118. https://doi.org/10.1016/j.ecolmodel.2016.02.021

  36. Hirzel, A.H., Lay, G.L., Helfer, V., Randin, C., and Guisan, A., Evaluating the ability of habitat suitability models to predict species presences, Ecol. Modell., 2006, vol. 199, pp. 142–152. https://doi.org/10.1016/J.ECOLMODEL.2006.05.017

    Article  Google Scholar 

  37. Kadleca, R.H., Pries, J., and Mustard, H., Muskrats (Ondatra zibethicus) in treatment wetlands, Ecol. Eng., 2007, vol. 29, no. 2, pp. 143–153.

    Article  Google Scholar 

  38. Kan’shiev, V.Ya., History and current state of the beaver population on the territory of the Vodlozersky National Park, in Tr. Gos. Prirodn. Zapov. “Kivach,”, 2016, no. 7, pp. 161–165.

  39. Kashtanov, S.N. and Salnikova, L.E., Aleutian mink disease: Epidemiological and genetic aspects, Biol. Bull. Rev., 2018, vol. 8, no. 2, pp. 104–113.

    Article  Google Scholar 

  40. Kassal, B.Y., Introduction of muskrat in Omsk oblast, Russ. J. Biol. Invasions, 2017, vol. 8, no. 3, pp. 232–243.

    Article  Google Scholar 

  41. Kauhala, K., Minkki, in Riistan jaljille. Riista– ja kalatalouden tutkimuslaitos, Linden, H., Hario, M., and Wikman, M., Eds., Helsinki: Edita, 1996, pp. 72–75.

    Google Scholar 

  42. Khlyap, L., Andronova, R., Kutenkov, A., Valencev, A., Osipov, F., and Petrosyan, V., Database of North American beaver (Castor canadensis Kuhl, 1820) in Russia, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 2021. https://doi.org/10.15468/5qnbjg. Accessed July 13, 2021

  43. Khlyap, L.A., Warshavsky, A.A., and Bobrov, V.V., Diversity of alien mammal species in different regions of Russia, Russ. J. Biol. Invasions, 2011, vol. 2, no. 4, pp. 293–299. https://doi.org/10.1134/S2075111711040059

    Article  Google Scholar 

  44. Kisleyko, A.A., Dinets, V., Grishchenko, M.Y., Kozlovskiy, E.E., and Khlyap, L.A., The European mink (Mustela lutreola) on Kunashir island: Confirmed survival 40 years after introduction, Mamm. Study, 2022, vol. 47, no. 3, pp. 155–164. https://doi.org/10.3106/ms2021-0044

    Article  Google Scholar 

  45. Kontrimavichus, V.L., Gel’mintofauna kun’ikh i puti ee formirovaniya (Helminth Fauna of Mustelids and Ways of Its Formation), Moscow: Nauka, 1969.

  46. Konyaev, S.V., Malkina, A.V., Ivanova, N.V., and Kleptsyna, E.S., Fauna of helminths of hunting animals in Tomsk oblast, Vet. Kubani, 2022, no. 3, pp. 32–34.

  47. Korablev, M.P., Korablev, N.P., and Korablev, P.N., Populyatsionnaya biologiya kun’ikh (lesnaya kunitsa, lesnoi khor’, amerikanskaya norka, evropeiskaya norka) (Population Biology of Mustelids (Pine Marten, Polecat, American Mink, European Mink)), Moscow: KMK, 2020.

  48. Kovalev, S.Y. and Mazurina, E.A., Omsk hemorrhagic fever virus is a tick-borne encephalitis virus adapted to muskrat through host-jumping, J. Med. Virol., 2022, vol. 94, no. 6, pp. 2510–2518. https://doi.org/10.1002/jmv.27581

    Article  CAS  PubMed  Google Scholar 

  49. Kunming-Montreal Global biodiversity framework CBD/COP/15/L25, December 18 2022, Montreal, Canada. http://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222. Cited March 19, 2023.

  50. Lavrov, N.P., Akklimatizatsiya ondatry v SSSR (Acclimatization of the Muskrat in the USSR), Moscow: Izd. Tsentrosoyuza, 1957.

  51. Lavrov, N.P., The history of acclimatization of the muskrat and its current habitat, in Ondatra. Morfologiya, sistematika, ekologiya (Muskrat. Morphology, Systematics, Ecology) Sokolov, V.E. and Lavrov, N.P., Eds., Moscow: Nauka, 1993, pp. 39–47.

  52. Lisovskii, A.A., Sheftel’, B.I., Savel’ev, A.P., Ermakov, O.A., Kozlov, Yu.A., Smirnov, D.G., Stakheev, V.V., and Glazov, D.M., Mlekopitayushchie Rossii: spisok vidov i prikladnye aspekty (Mammals of Russia: List of Species and Applied Aspects), Moscow: KMK, 2019.

  53. Lobo, J.M., Jiménez-Valverde, A., and Real, R., AUC: A misleading measure of the performance of predictive distribution models, Global Ecol. Biogeogr., 2008, vol. 17, no. 2, pp. 145–151.https://doi.org/10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  54. Lobo, J.M., Jiménez-Valverde, A., and Hortal, J., The uncertain nature of absences and their importance in species distribution modelling, Ecography, 2010, vol. 33, no. 1, pp. 103–114. https://doi.org/10.1111/j.1600-0587.2009.06039.x

    Article  Google Scholar 

  55. Maksimov, A.A. and Kharitonova, N.N., Diseases of the Muskrat in the USSR, in Epizootii v populyatsiyakh ondatry v SSSR (Epizootics in Populations of Muskrats in USSR), Novosibirsk: Nauka, 1975, pp. 18–31.

  56. Maslennikova, O.V. and Strel’nikov, D.P., The influence of the habitat on the infection of the American mink (Neovison vison Schreber, 1777) with helminths, Dal’nevost. Agrar. Vestn., 2020, vol. 4, no. 56, pp. 88–96.

    Google Scholar 

  57. Matyushkin, E.A., Euro-East Asian range gap of terrestrial vertebrates, Zool. Zh., 1976, vol. 55, no. 9, pp. 1277–1291.

    Google Scholar 

  58. Masur, O.E. and Fomina, A.S., Revelation of Echinococcus multilocularis (Leuckart, 1856) in the muskrat (Ondatra zibethicus) of the delta of the Selenga River (Russia), Russ. J. Biol. Invasions, 2012, vol. 3, no. 4, pp. 251–254.

    Article  Google Scholar 

  59. Müller-Schwarze, D., The Beaver: Its Life and Impact, New York: Cornell Univ. Press, 2011, 2nd ed.

    Book  Google Scholar 

  60. Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., and Anderson, R.P., ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models, Methods Ecol. Evol., 2014, vol. 5, no. 11, pp. 1198–1205. https://doi.org/10.1111/2041-210X.12261

    Article  Google Scholar 

  61. Naimi, B., Hamm, N.A.S., Groen, vol.A., Skidmore, A.K., and Toxopeus, A.G., Where is positional uncertainty a problem for species distribution modelling, Ecography, 2014, vol. 37, no. 2, pp. 191–203.https://doi.org/10.1111/j.1600-0587.2013.00205.x

    Article  Google Scholar 

  62. Nasimovich, A.A., Acclimatization, animal population and zoogeography, in Issledovaniya po faune Sovetskogo Soyuza (mlekopitayushchie) (Research on the Fauna of the Soviet Union (Mammals)), Rossolimo, O.L. and Dolgov, V.A., Eds., Moscow: Mosk. Gos. Univ., 1972, pp. 34–50.

  63. Neronov, V.M., Khlyap, L.A., Bobrov, V.V., and Warshavsky, A.A., Alien species of mammals and their impact on natural ecosystems in the biosphere reserves of Russia, Integr. Zool., 2008, no. 3, pp. 83–94.

  64. Nolet, B.A. and Rosell, F., Comeback of the beaver castor fiber: An overview of old and new conservation problems, Biol. Conserv., 1998, vol. 83, pp. 165–173. https://doi.org/10.1016/S0006-3207(97)00066-9

    Article  Google Scholar 

  65. OANO (Overview of the Aichi-Nagoya Outcomes), The Strategic Plan for Biodiversity 2011–20, the Aichi Biodiversity Targets and National Implementation, David Duthie, CBD Secretariat Istanbul, Turkey, October 2011, 2011. http://www.cbd.int/doc/nbsap/nbsapcbw-casi-02/nbsap-istanbul-scbd-nagoya-outcomes-national-implement.pdf. Cited December 18, 2022.

  66. Okulova, N.M., Grazhdanov, A.K., and Neronov, V.V., Struktura i dinamika soobshchestv mlekopitayushchikh Zapadnogo Kazakhstana (Structure and Dynamics of Mammalian Communities in Western Kazakhstan), Moscow: KMK, 2017.

    Google Scholar 

  67. Oleynikov, A.Yu., Distribution of native and introduced semiaquatic mammals in Sikhote-Alin, Russ. J. Biol. Invasions, 2013, vol. 4, no. 3, pp. 180–189.

    Article  Google Scholar 

  68. Ondatra. Morfologiya, sistematika, ekologiya (Muskrat. Morphology, Systematics, Ecology), Sokolov, V.E. and Lavrov, N.P., Eds., Moscow: Nauka, 1993.

    Google Scholar 

  69. Parker, H., Nummi, P., Hartman, G., and Rosell, F., Invasive North American beaver Castor canadensis in Eurasia: A review of potential consequences and a strategy for eradication, Wildl. Biol., 2012, vol. 18, no. 4, pp. 354–365.

    Article  Google Scholar 

  70. Patterson, B.D., Ramírez-Chaves, H.E., Vilela, J.F., Soares, A.E.R., and Grewe, F., On the nomenclature of the American clade of weasels (Carnivora: Mustelidae), J. Anim. Diversity, 2021, vol. 3, no. 2, pp. 1–8. https://doi.org/10.29252/JAD.2021.3.2.1

    Article  Google Scholar 

  71. Petitpierre, B., Kueer, C., Broennimann, O., Randin, C., Daehler, C., and Guisan, A., Climatic niche shifts are rare among terrestrial plant invaders, Science, 2012, vol. 335, no. 6074, pp. 1344–1348. https://doi.org/10.1126/science.1215933

    Article  CAS  PubMed  Google Scholar 

  72. Petrosyan, V.G., Golubkov, V.V., Zavyalov, N.A., Goryainova, Z.I., Dergunova, N.N., Omelchenko, A.V., Bessonov, S.A., Albov, S.A., Marchenko, N.F., and Khlyap, L.A., Patterns of population dynamics of Eurasian beaver (Castor fiber L.) after reintroduction into nature reserves of European part of Russia, Russ. J. Biol. Invasions, 2016, vol. 7, no. 4, pp. 355–373.

    Article  Google Scholar 

  73. Petrosyan, V.G., Golubkov, V.V., Zavyalov, N.A., Khlyap, L.A., Dergunova, N.N., and Osipov, F.A., Modelling of competitive interactions between native Eurasian (Castor fiber) and alien North American (Castor canadensis) beavers based on long-term monitoring data (1934–2015), Ecol. Modell., 2019a, vol. 409, p. 108763. https://doi.org/10.1016/J.ECOLMODEL.2019.108763

    Article  Google Scholar 

  74. Petrosyan, V., Osipov, F., Bobrov, V., Dergunova, N., Nazarenko, E., Omelchenko, A., Danielyan, F., and Arakelyan, M., Analysis of geographical distribution of the parthenogenetic rock lizard Darevskia armeniaca and its parental species (D. mixta, D. valentini) based on ecological modeling, Salamandra, 2019b, vol. 55, no. 3, pp. 173–190.

    Google Scholar 

  75. Petrosyan, V., Osipov, F., Bobrov, V., Dergunova, N., Omelchenko, A., Varshavskiy, A., Danielyan, F., and Arakelyan, M., Species distribution models and niche partitioning among unisexual darevskia dahli and its parental bisexual (D. portschinskii, D. mixta) rock lizards in the Caucasus, Mathematics, 2020, vol. 8, no. 8, p. 1329.https://doi.org/10.3390/math8081329

    Article  Google Scholar 

  76. Petrosyan, V., Osipov, F., Feniova, I., Dergunova, N., Warshavsky, A., Khlyap, L., and Dzialowski, A., The TOP-100 most dangerous invasive alien species in Northern Eurasia: Invasion trends and species distribution modeling, NeoBiota, 2023, no. 82, pp. 23–56. https://doi.org/10.3897/neobiota.82.96282

  77. Petrosyan, V. G., Osipov, F.A., Krivosheina, M.G., Dergunova, N.N., and Khlyap, L.A., Application of the ensemble approach to create models of the dynamics of the ranges of the most dangerous invasive plant species in Russia under global climate change, in Matematicheskoe modelirovanie v ekologii, Mat-ly Sed’moi Natsional’noi nauchn. konf. s mezhdunarodnym uchastiem, 9–12 noyabrya 2021 g. (Mathematical Modeling in Ecology. Proc. Seventh Natl. Sci. Conf. with Int. Participation, November 9–12, 2021), Grabarnik, P.Ya. and Logofet, D.O., Eds., Pushchino: Fed. Issled. Tsentr “Pushchinskii Nauchn. Tsentr Biol. Issled. Ross. Akad. Nauk,” 2021, pp. 96–98.

  78. Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Modell., 2006, vol. 190, pp. 231–259.

    Article  Google Scholar 

  79. Platonov, A.E., Ciccozzi, M., Karan’, L.S., Yakimenko, V.V., Lo Presti, A., and Rezza, G., Modern methods for studying the phylogeny of viruses (exemplified by Omsk hemorrhagic fever virus), Epidemiol. Infekt. Bolezni. Aktual. Vopr., 2014, no. 2, p. 57–64.

  80. Pridannikov, M.V., Zinovjeva, S.V., Khudyakova, E.A., Limantseva, L.A., Osipov, F.A., Dergunova, N.N., and Petrosyan, V.G., Range dynamics of potato cyst nematode Globodera rostochiensis (Wollenweber, 1923) Skarbilovich, 1959 under conditions of global climate change in Russia, Russ. J. Biol. Invasions, 2022, vol. 13, no. 4, pp. 510–529. https://doi.org/10.1134/S2075111722040099

    Article  Google Scholar 

  81. QGABT (Quick guide to the Aichi Biodiversity Targets), 2021, CBD. www.cbd.int/doc/strategic-plan/targets/T9-quick-guide-en.pdf. Cited December 18, 2022.

  82. Radosavljevic, A. and Anderson, R.P., Making better MaxEnt models of species distributions: Complexity, overfitting and evaluation, J. Biogeogr., 2014, no. 41, pp. 629–643. https://doi.org/10.1111/jbi.12227

  83. Robertson, P.A., Adriaens, T., Lambin, X., Mill, A., Roy, S., Shuttleworth, CM., and Sutton-Croft, M., The large-scale removal of mammalian invasive alien species in Northern Europe, Pest Manage. Sci., 2016. https://doi.org/10.1002/ps.4224

  84. Rodda, G.H., Jarnevich, C.S., and Reed, R.N., Challenges in identifying sites climatically matched to the native ranges of animal invaders, PLoS One, 2011, vol. 6, no. 2, p. e14670. https://doi.org/10.1371/journal.pone.0014670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Romashov, B.V., Gel’minty rechnykh bobrov: Castor fiber i Castor sanadensis (Beaver Helminths: Castor fiber and Castor canadensis), Voronezh: Voronezh. Gos. Agrar. Univ., 2015.

  86. Romashov, B.V., Rogov, M.V., Bespalova, N.S., Manzhurina, O.A., Skogoreva, A.M., Romashova, N.B., Galyuzina, N.A., Fofonova, E.N., and Meza, Kh., The most common natural focal helminthiases in the Voronezh oblast—Epidemiological risks, Teor. Prakt. Parazit. Boleznei Zhivotn., 2013, no. 14, pp. 317–320.

  87. Rosell, F. and Campbell-Palmer, R., Beavers: Ecology, Behaviour, Conservation, and Management, Oxford: Oxford Univ. press, 2022.

    Book  Google Scholar 

  88. Rozhnov, V.V., Extinction of the European mink: Ecological catastrophe or a natural process?, Lutreola, 1993, no. 1, pp. 10–16.

  89. Rudakov, N.V., Yastrebov, V.K., and Yakimenko, V.V., Epidemiology of Omsk haemorragic fever, Epidemiol. Vaktsinoprofil., 2015, vol. 14, no. 1, pp. 39–48. https://doi.org/10.31631/2073-3046-2015-14-1-39-48

    Article  Google Scholar 

  90. Rutovskaya, M.V., Onufrenya, M.V., and Onufrenya, A.S., Russian desman at the edge of disappearance, Nat. Conserv. Res., 2017, vol. 2, suppl. 1, pp. 100–112. https://doi.org/10.24189/ncr.2017.020

  91. Safronov, V.M., Zakharov, E.S., Koryakina, L.P., Valuable species of mammals in Northern Yakutia, Dostizh. Nauki Tekh. APK, 2016, vol. 30, no. 11, pp. 88–93.

    Google Scholar 

  92. Samye opasnye invazionnye vidy Rossii (TOP-100) (The Most Dangerous Invasive Species in Russia (TOP–100)), Dgebuadze, Yu.Yu., Petrosyan, V.G., and Khlyap, L.A., Eds., Moscow: KMK, 2018.

  93. Savel’ev, A.P., Changes in the helminth fauna of beavers as a result of artificial resettlement, in Parazitol. issledovaniya v Sibiri i na Dal’nem Vostoke. Materially 2-i Mezhdunar. nauch. konf. parazitologov Sibiri i Dal’nego Vostoka (Parazitol. Research in Siberia and the Far East. Proc. 2nd Int. Sci. Conf. Parasitologists of Siberia and the Far East), Novosibirsk, 2005, pp. 173–177.

  94. Savel’ev, A.P., Shtubbe, M., Shtubbe, A., Putintsev, N.I., and Oleinikov, A.Yu., Natural and post-release movements of the beavers, Vestn. Okhotoved., 2010, vol. 7, no. 2, pp. 340–344.

    Google Scholar 

  95. Shaldybin, L.S., Helminths of the muskrat from the territory of the former USSR, in Ondatra. Morfologiya, sistematika, ekologiya (Muskrat. Morphology, Systematics, Ecology), Sokolov, V.E. and Lavrov, N.P., Eds., Moscow: Nauka, 1993, pp. 444–461.

  96. Shenbrot, G.I. and Krasnov, B.R., An Atlas of the Geographic Distribution of the Arvicoline Rodents of the World (Rodentia, Muridae: Arvivolinae), Sofia: Pensoft, 2005.

    Google Scholar 

  97. Shikhova, T.G. and Shiryaev, V.V., Taxonomic composition of mollusks in the diet of muskrat Ondatra zibethicus (L., 1766) within the invasive territory, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 2019, vol. 124, no. 3, pp. 3–12.

    Google Scholar 

  98. Skumatov, D.V. and Bel’tyukova, Z.N., Distribution of Aleutian mink disease in free-living mustelids, in VIII Molodezhnaya nauchnaya konferentsiya Aktual’nye problemy biologii i ekologii (VIII Youth Sci. Conf. “Actual Problems of Biology and Ecology”), Syktyvkar, 2002, pp. 54–56.

  99. Skumatov, D.V. and Saveljev A.P., The distribution of European mink in Russia and estimation of trapping impact, in Proc. Int. Conf. on the Conservation of European Mink (Mustela lutreola), 5–8 November 2003, Logrono, Spain, 2006, pp. 253–266.

  100. Sosin, V.F., Some features of the distribution of muskrats in Yamal, in Sovremennoe sostoyanie rastitel’nogo i zhivotnogo mira poluostrova Yamal (The Current State of the Flora and Fauna of the Yamal Peninsula), Balakhonov, V.S., Ed., Yekaterinburg: Nauka, 1995, pp. 141–145.

  101. Tabor, J.A. and Koch, J.B., Ensemble models predict invasive bee habitat suitability will expand under future climate scenarios in Hawai’i, Insects, 2021, vol. 12. no. 5, p. 443.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tarasov, M.A., Porshakov, A.M., Kazakova, L.V., Kresova, U.A., Romanov, R.A., and Sludskii, A.A., Мodern cadastre of species of tularemia microbe carriers habitant in tularemia foci of different types, situated in the territory of Russia, Izv. Saratov. Univ., Nov. Ser. Ser.: Khim. Biol. Ekol., 2019, vol. 19, no. 1, pp. 70–78.

  103. Tenovuo, R., Minkki saaristoalueilla, in Suomen riista, Helsinki, 1963, no. 16.

  104. Ternovskii, D.V., Biologiya i akklimatizatsiya amerikanskoi norki (Lutreola vison Brisson) na Altae (Biology and Acclimatization of the American Mink (Lutreola vison Brisson) in Altai), Maksimov, A.A., Ed., Novosibirsk: Knizhnoe Izd., 1958.

  105. Ternovskii, D.V. and Ternovskaya, Yu.G., Ekologiya kunitseobraznykh (Ecology of Martens), Evsikov, V.I., Ed., Novosibirsk: Nauka, 1994.

    Google Scholar 

  106. Thuiller, W., Lafourcade, B., Engler, R., and Ara_ujo, M.B., BIOMOD—A platform for ensemble forecasting of species distributions, Ecography, 2009, vol. 32, pp. 369–373.

    Article  Google Scholar 

  107. Thuiller, W., Georges, D., Gueguen, D., Engler, R., and Breiner, F., Ensemble Platform for Species Distribution Modeling. https://cran.r-project.org/web/packages/biomod2/biomod2.pdf. Cited July 6, 2021.

  108. Tumanov, I.L., Redkie khishchnye mlekopitayushchie Rossii (melkie i srednie vidy) (Rare Predatory Mammals of Russia (Small and Medium Species)), St. Peterburg: Branko, 2009.

  109. Valentsev, A.S., Snegur, P.P., and Primak, T.I., The results of American mink acclimatization in Kamchatka, Vestn. Okhotoved., 2022, vol. 19, no. 3, pp. 143–150.

    Google Scholar 

  110. Warren, D.L. and Seifert, S., Ecological niche modeling in MaxEnt: The importance of model complexity and the performance of model selection criteria, Ecol. Appl., 2011, vol. 21, no. 2, pp. 335–342.

    Article  PubMed  Google Scholar 

  111. Warren, D.L., Glor, R.E., and Turelli, M., ENMtools: A toolbox for comparative studies of environmental niche models, Ecography, 2010, vol. 33, pp. 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x

    Article  Google Scholar 

  112. Yanushevich, A.I., Aizin, B.M., Kydyraliev, A.K., et al., Mlekopitayushchie Kirgizii (Mammals of Kyrgyzstan), Frunze: Ilim, 1972.

  113. Yastrebov, V.K. and Yakimenko, V.V., Omsk hemorrhagic fever: Research findings (1946–2013), Vopr. Virusol., 2014, vol. 59, no. 6, pp. 5–11.

    CAS  PubMed  Google Scholar 

  114. Zakharov, E.S., Smetanin, N.N., Sidorov, I.A., Zakharova, O.I., Filippova, V.V., and Zakharova, N.N., Distribution of the muskrat (Ondatra zibethicus L.) and the american mink (Neovison vison Schreber) in Yakutia (Northeast Asia, Russia), Russ. J. Biol. Invasions, 2023, vol. 14, no. 3, pp. 329–337.

  115. Zav’yalov, N.A., Ecosystem engineering of the beaver (Castor fiber L.) in the forest zone of European part of Russia, in Trudy Gosudarstvennogo prirodnogo zapovednika “Rdeiskii” (Proceeding of state nature reserve “Rdeiskii”), Velikiy Novgorod, 2015, no. 3.

  116. Zhivotnyi mir Visherskogo kraya: pozvonochnye zhivotnye (Fauna of the Vishersky Region: Vertebrates), Shepel’, A.I., Ed., Perm: Knizhnyi Mir, 2004.

Download references

ACKNOWLEDGMENTS

We are grateful to ESRI (United States) for providing a free licensed version of Arc GIS Desktop Pro 10.6.1 (Esri Sales Order number 3128913; Esri Delivery number 81833751, User customer number 535452).

Funding

The work was supported by the Russian Science Foundation, project no. 21-14-00123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Khlyap.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlyap, L.A., Warshavsky, A.A., Dergunova, N.N. et al. The Most Dangerous Invasive Near-Water Mammals in Russia: Ensemble Models of Spatial Distribution. Russ J Biol Invasions 14, 457–483 (2023). https://doi.org/10.1134/S2075111723030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111723030104

Keywords:

Navigation