Skip to main content
Log in

Impact of Low Salinity on Hemocytes Morphology and Functional Aspects in Alien Clam Anadara kagoshimensis (Tokunaga, 1906)

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

The impact of low salinity on morphology and function of hemocytes in ark clam species Anadara kagoshimensis was investigated using light microscopy and flow cytometry. In the control group, the water salinity was adjusted to 19.6‰, and the experimental group was maintained at 14.8 and 8.8‰. Two cell types, amebocytes and erythrocytes, were identified in control group of ark clams. Erythrocytes constituted the main type of the cells; their share was 92.3 ± 3.9%. Hyposalinity changed that proportion: the number of amebocytes decreased by 2.7 times and number of erythrocytes increased by 7.6 times. Morphometric characteristics of hemocytes did not show statistically significant changes. As the salinity decreased, the number of erythrocyte ghosts in hemolymph increased (by 3.5 times at salinity of 8.8‰) and, in hemocytes, the reactive oxygen species (ROS) production grew (by 3.5 times at salinity of 8.8‰).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Andreeva, A.M. and Ryabtseva, I.P., Adaptation mechanisms of respiratory blood function in Teleostei, J. Ichthyol., 2011, vol. 51, pp. 799–808.

    Article  Google Scholar 

  2. Andreyeva, A.Y., Efremova, E.S., and Kukhareva, T.A., Morphological and functional characterization of hemocytes in cultivated mussel (Mytilus galloprovincialis) and effect of hypoxia on hemocyte parameters, Fish Shellfish Immunol., 2019, vol. 89, pp. 361–367.

    Article  CAS  PubMed  Google Scholar 

  3. Bachere, E., Rosa, R.D., Schmitt, P., Poirier, A.C., Merou, N., Charrière, G.M., and Destoumieux-Garzón, D., The new insights into the oyster antimicrobial defense: cellular, molecular and genetic view, Fish Shellfish Immunol., 2015, vol. 46, no. 1, pp. 50–64.

    Article  CAS  PubMed  Google Scholar 

  4. Barcia, R., Cao, A., Arbeteta, J., and Ramos-Martinez, J.I., The IL-2 receptor in hemocytes of the sea mussel Mytilus galloprovincialis Lmk., IUBMB Life, 1999, vol. 48, no. 4, pp. 419–423.

    Article  CAS  PubMed  Google Scholar 

  5. Bregante, M., Carpaneto, A., Piazza, V., Sbrana, F., Vassalli, M., Faimali, M., and Gambale, F., Osmoregulated chloride currents in hemocytes from Mytilus galloprovincialis, PLoS One, 2016, vol. 11, no. 12. e0167972.

  6. Bussell, J.A., Gidman, E.A., Causton, D.R., Gwynn-Jones, D., Malham, S.K., and Jones, M.L.M., Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress, J. Exp. Mar. Biol. Ecol., 2008, vol. 358, pp. 78–85.

  7. Butt, D. and Raftos, D., Immunosuppression in Sydney rock oysters (Saccostrea glomerata) and QX disease in the Hawkesbury River Sydney, Mar. Freshwater Res., 2007, vol. 58, pp. 213–221.

    Article  CAS  Google Scholar 

  8. Cajaraville, M.P. and Pal, S.G., Morphofunctional study of the haemocytes of the bivalve mollusc Mytilus galloprovincialis with emphasis on the endolysosomal compartment, Cell Struct. Funct., 1995, vol. 20, no. 5, pp. 355–367.

    Article  CAS  PubMed  Google Scholar 

  9. Callewaert, L. and Michiels, C.W., Lysozymes in the animal kingdom, J. Biosci., 2010, vol. 35, no. 1, pp. 127–160.

    Article  CAS  PubMed  Google Scholar 

  10. Carballal, M.J., Lopez, M.C., Azevedo, C., and Villalba, A., Hemolymph cell types of the mussel Mytilus galloprovincialis, Dis. Aquat. Organ., 1997, vol. 29, no. 2, pp. 127–135.

    Article  Google Scholar 

  11. Cheng, W.T., Juang, F.M., and Chen, J.C., The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels, Fish Shellfish Immunol., 2004, vol. 16, pp. 295–306.

    Article  CAS  PubMed  Google Scholar 

  12. Chikhachev, A.S., Frolenko, L.N., and Rekov, Yu.I., A new invader in the Sea of Azov, Rybn. Khoz., 1994, vol. 3, pp. 40–45.

    Google Scholar 

  13. Cochennec-Laureau, N., Auffret, M., Renault, T., and Langlade, A., Changes in circulating and tissue-infiltrating hemocyte parameters of European flat oysters, Ostrea edulis, naturally infected with Bonamia ostreae, J. Invertebr. Pathol., 2003, vol. 83, no. 1, pp. 23–30.

    Article  PubMed  Google Scholar 

  14. Cossins, A.R. and Gibson, J.S., Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells, J. Exp. Biol., 1997, vol. 200, no. 2, pp. 343–352.

    Article  CAS  PubMed  Google Scholar 

  15. Dang, C., Cribb, T.H., Osborne, G., Kawasaki, M., Bedin, A.S., and Barnes, A.C., Effect of a hemiuroid trematode on the hemocyte immune parameters of the cockle Anadara trapezia, Fish Shellfish Immunol., 2013, vol. 35, no. 3, pp. 951–956.

    Article  PubMed  Google Scholar 

  16. Davenport, J. and Wong, T.M., Responses of the blood cockle Anadara granosa (L.) (Bivalvia: Arcidae) to salinity, hypoxia and aerial exposure, Aquaculture, 1986, vol. 56, no. 2, pp. 151–162.

    Article  Google Scholar 

  17. de Zwaan, A., Cortesi, P., van den Thillart, G., Roos, J., and Storey, K.B., Differential sensitivities to hypoxia by two anoxia-tolerant marine molluscs: a biochemical analysis, Mar. Biol., 1991, vol. 111, pp. 343–351.

    Article  Google Scholar 

  18. de Zwaan, A., Cortesi, P., van den Thillart, G., Brooks, S., Storey, K.B., Roos, J., van Lieshout, G., Cattani, O., and Vitali, G., Energy metabolism of bivalves at reduced oxygen tensions, Marine Coastal Eutrophication: Proceedings of an International Conference, Bologna, Italy, 21–24 March 1990, 1992, pp. 1029–1040.

  19. de Zwaan, A., Isani, G., Cattani, O., and Cortesi, P., Long-term anaerobic metabolism of erythrocytes of the arcid clam Scapharca inaequivalvis, J. Exp. Mar. Biol. Ecol., 1995, vol. 187, no. 1, pp. 27–37.

    Article  CAS  Google Scholar 

  20. Donaghy, L., Kim, B.K., Hong, H.K., Park, H.S., and Choi, K.S., Flow cytometry studies on the populations and immune parameters of the hemocytes of the Suminoe oyster, Crassostrea ariakensis, Fish Shellfish Immunol., 2009, vol. 27, no. 2, pp. 296–301.

    Article  CAS  PubMed  Google Scholar 

  21. Fisher, W.S. and Newell, R.I.E., Salinity effects on the activity of granular hemocytes of American oysters, Crassostrea virginica, Biol. Bull., 1986, vol. 170, no. 1, pp. 122–134.

    Article  Google Scholar 

  22. Fuhrmann, M., Petton, B., Quillien, V., Faury, N., Morga, B., and Pernet, F., Salinity influences disease-induced mortality of the oyster Crassostrea gigas and infectivity of the ostreid herpesvirus 1 (OsHV-1), Aquacult. Environ. Interact., 2016, vol. 8, pp. 543–552.

    Article  Google Scholar 

  23. Gagnaire, B., Frouin, H., Moreau, K., Thomas-Guyon, H., and Renault, T., Effects of temperature and salinity on haemocyte activities of the pacific oyster, Crassostrea gigas (Thunberg), Fish Shellfish Immunol., 2006, vol. 20, pp. 536–547.

    Article  CAS  PubMed  Google Scholar 

  24. Gajbhiye, D.S. and Khandeparker, L., Immune response of the short neck clam Paphia malabarica to salinity stress using flow cytometry, Mar. Environ. Res., 2017, vol. 129, pp. 14–23.

    Article  CAS  PubMed  Google Scholar 

  25. Hegaret, H., Wikfors, G.H., and Soudant, P., Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation: II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst, J. Exp. Mar. Biol. Ecol., 2003, vol. 293, no. 2, pp. 249–265.

    Article  Google Scholar 

  26. Hermes-Lima, M., Moreira, D.C., Rivera-Ingraham, G.A., Giraud-Billoud, M., Genaro-Mattos, T.C., and Campos, É.G., Preparation for oxidative stress under hypoxia and metabolic depression: revisiting the proposal two decades later, Free Radical Biol. Med., 2015, vol. 89, pp. 1122–1143.

    Article  CAS  Google Scholar 

  27. Holden, J.A., Pipe, R.K., Quaglia, A., and Ciani, G., Blood cells of the arcid clam, Scapharca inaequivalvis, J. Mar. Biol. Assoc. U.K., 1994, vol. 74, no. 2, pp. 287–299.

    Article  Google Scholar 

  28. Ivanov, A.A., Fiziologiya ryb (Physiology of Fish), Moscow: Mir, 2003.

  29. Kiseleva, M.I., Comparative characteristics of benthic communities off the coast of the Caucasus, in Mnogoletnie izmeneniya zoobentosa Chernogo morya (Long-Term Changes in the Zoobenthos of the Black Sea), Kiev: Naukova Dumka, 1992, pp. 84–99.

  30. Kladchenko, E.S., Andreyeva, A.Y., Kukhareva, T.A., and Soldatov, A.A., Morphologic, cytometric and functional characterisation of Anadara kagoshimensis hemocytes, Fish Shellfish Immunol., 2020, vol. 98, pp. 1030–1032.

    Article  CAS  PubMed  Google Scholar 

  31. Kolyuchkina, G.A. and Ismailov, A.D., Morpho-functional characteristics of bivalve mollusks under the experimental environmental pollution by heavy metals, Oceanology, 2011, vol. 51, no. 5, p. 804.

    Article  Google Scholar 

  32. Kuropatkin, A.P., Shishkin, V.M., Burlachko, D.S., Karmanov, V.G., Zhukova, S.V., Podmareva, T.I., and Lutynskaya, L.A., Modern and promising changes in the salinity of the Sea of Azov, Zashch. Okruzh. Sredy Neftegazov. Komplekse, 2015, no. 11, pp. 7–16.

  33. Li, J., Zhang, Y., Zhang, Y., Xiang, Z., Tong, Y., Qu, F., and Yu, Z., Genomic characterization and expression analysis of five novel IL-17 genes in the Pacific oyster, Crassostrea gigas, Fish Shellfish Immunol., 2014, vol. 40, no. 2, pp. 455–465.

    Article  CAS  PubMed  Google Scholar 

  34. Lutaenko, K.A., Expected faunistic changes in the Sea of Japan basin: the effect of climate and sea level on the distribution of bivalve molluscs, Byull. Dal’nevost. Malakol. O-va, 1999, no. 3, pp. 38–64.

  35. Matozzo, V., Aspects of eco-immunology in molluscs, Invertebr. Survival J., 2016, vol. 13, no. 1, pp. 116–121.

    Google Scholar 

  36. Matozzo, V., Monari, M., Foschi, J., Serrazanetti, G.P., Cattani, O., and Marin, M.G., Effects of salinity on the clam Chamelea gallina. Part I: alterations in immune responses, Mar. Biol., 2007, vol. 151, pp. 1051–1058.

    Article  Google Scholar 

  37. Mello, D.F., De Oliveira, E.S., Vieira, R.C., Simoes, E., Trevisan, R., Dafre, A.L., and Barracco, M.A., Cellular and transcriptional responses of Crassostrea gigas hemocytes exposed in vitro to brevetoxin (PbTx-2), Mar. Drugs, 2012, vol. 10, no. 3, pp. 583–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakahara, Y., Shimura, S., Ueno, C., Kanamori, Y., Mita, K., Kiuchi, M., and Kamimura, M., Purification and characterization of silkworm hemocytes by flow cytometry, Dev. Comp. Immunol., 2009, vol. 33, no. 4, pp. 439–448.

    Article  CAS  PubMed  Google Scholar 

  39. Novitskaya, V.N. and Soldatov, A.A., Peculiarities of functional morphology of erythroid elements of hemolymph of the bivalve mollusk Anadara inaequivalvis, the Black Sea, Hydrobiol. J., 2013, vol. 49, no. 6, pp. 64–71.

    Article  Google Scholar 

  40. Perrigault, M., Dahl, S.F., Espinosa, E.P., and Allam, B., Effects of salinity on hard clam (Mercenaria mercenaria) defense parameters and QPX disease dynamics, J. Invertebr. Pathol., 2012, vol. 110, pp. 73–82.

    Article  CAS  PubMed  Google Scholar 

  41. Phuvasate, S. and Su, Y.C., Impact of water salinity and types of oysters on depuration for reducing Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas), Food Control, 2013, vol. 32, pp. 569–573.

    Article  CAS  Google Scholar 

  42. Poutiers, J.M., Gastropods, FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific, Rome: FAO, 1998, vol. 1, pp. 363–648.

    Google Scholar 

  43. Reid, H.I., Soudant, P., Lambert, C., Paillard, C., and Birkbeck, T.H., Salinity effects on immune parameters of Ruditapes philippinarum challenged with Vibrio tapetis, Dis. Aquat. Org., 2003, vol. 56, pp. 249–258.

    Article  CAS  Google Scholar 

  44. Revkov, N.K., Abaza, V., Dumitrache, C., Todorova, V., Konsulova, T., Mickashavidze, E., and Kucheruk, N.V., The state of zoobenthos, Commission on the Protection of the Black Sea Against Pollution, 2008, p. 243.

    Google Scholar 

  45. Rinaldi, E., Alcuni dati signifi cativi sulla proliferazione di Scapharca inaequivalvis (Bruguière, 1789) in Adriatico lungo la costa Romagnola, Boll. Malacol., 1985, vol. 21, pp. 41–42.

    Google Scholar 

  46. Soldatov, A.A., Andreenko, T.I., Sysoeva, I.V., and Sy-soev, A.A., Tissue specificity of metabolism in the bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia, J. Evol. Biochem. Physiol., 2009, vol. 45, no. 3, pp. 349–355.

    Article  CAS  Google Scholar 

  47. Soldatov, A.A., Gostyukhina, O.L., Borodina, A.V., and Golovina, I.V., Glutathione antioxidant complex and carotenoid composition in tissues of the bivalve mollusk Anadara kagoshimensis (Tokunaga, 1906), J. Evol. Biochem. Physiol., 2017, vol. 53, no. 4, pp. 289–297.

    Article  CAS  Google Scholar 

  48. Soldatov, A.A., Kukhareva, T.A., Andreeva, A.Y., and Efremova, E.S., Erythroid elements of hemolymph in Anadara kagoshimensis (Tokunaga, 1906) under conditions of the combined action of hypoxia and hydrogen sulfide contamination, Russ. J. Mar. Biol., 2018, vol. 44, no. 6, pp. 452–457.

    Article  CAS  Google Scholar 

  49. Song, L., Wang, L., Qiu, L., and Zhang, H., Bivalve immunity, in Invertebrate Immunity, Boston: Springer, 2010, pp. 44–65.

    Google Scholar 

  50. Taylor, A.M., Maher, W.A., and Ubrihien, R.P., Mortality, condition index and cellular responses of Anadara trapezia to combined salinity and temperature stress, J. Exp. Mar. Biol. Ecol., 2017, vol. 497, pp. 172–179.

    Article  CAS  Google Scholar 

  51. Torre, A., Trischitta, F., and Faggio, C., Effect of CdCl2 on regulatory volume decrease (RVD) in Mytilus galloprovincialis digestive cells, Toxicol. In Vitro, 2013, vol. 27, no. 4, pp. 1260–1266.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y.J., Hu, M.H., Cheung, S.G., Shin, P.K.S., Lu, W.Q., and Li, J.L., Immune parameter changes of hemocytes in green-lipped mussel Perna viridis exposure to hypoxia and hyposalinity, Aquaculture, 2012, vol. 356, pp. 22–29.

    Article  Google Scholar 

  53. Wang, L., Song, X., and Song, L., The oyster immunity, Dev. Comp. Immunol., 2018, vol. 80, pp. 99–118.

    Article  CAS  PubMed  Google Scholar 

  54. Wong, P., A hypothesis on the role of the electrical charge of haemoglobin in regulating the erythrocyte shape, Med. Hypotheses, 2004, vol. 62, no. 1, pp. 124–129.

    Article  CAS  PubMed  Google Scholar 

  55. Wu, F., Xie, Z., Lan, Y., Dupont, S., Sun, M., Cui, S., and Lu, W., Short-term exposure of Mytilus coruscus to decreased pH and salinity change impacts immune parameters of their haemocytes, Front. Physiol., 2018, vol. 9, p. 166.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang, M., Li, L., Liu, Y., and Gao, X., Effects of a sudden drop in salinity on immune response mechanisms of Anadara kagoshimensis, Int. J. Mol. Sci., 2019, vol. 20, no. 18, p. 4365.

    Article  CAS  PubMed Central  Google Scholar 

  57. Zolotnitskaya, R.P., Methods of histological research, in Laboratornye metody issledovanii v klinike: Spravochnik (Clinical Laboratory Research Methods: Handbook), Moscow: Meditsina, 1987, pp. 106–148.

Download references

Funding

This study was carried out with the support of the Russian Foundation for Basic Research within the framework of scientific project no. 19-34-50080, and also partly within the framework of the state assignment of the Federal Research Center Institute of Biology of the Southern Seas (registration number AAAA-A 18-118021490093-4—light optical microscopy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kladchenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All experimental protocols were carried out in accordance with the EU guidelines for the use and care of laboratory animals (86/609/CEE) and in compliance with the rules approved by the order of the Presidium of the USSR Academy of Sciences of April 2, 1980, no. 12000-496 and the order of the USSR Ministry of Higher Education of September 13, 1984, no. 22. Every effort was made to use only the minimum number of animals necessary to obtain reliable scientific evidence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kladchenko, E.S., Andreyeva, A.Y., Kukhareva, T.A. et al. Impact of Low Salinity on Hemocytes Morphology and Functional Aspects in Alien Clam Anadara kagoshimensis (Tokunaga, 1906). Russ J Biol Invasions 12, 203–212 (2021). https://doi.org/10.1134/S2075111721020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111721020089

Keywords:

Navigation