Skip to main content

Anthropogenic Invasion of Micromycetes to Undisturbed Ecosystems of the Larsemann Hills Oasis (East Antarctica)

Abstract

The Progress Station is the largest Russian Antarctic station. The anthropogenic impact on primary soils in the area of this station is reflected in the chemical structure of soils and structure of microbial communities. The article shows a multiple increase in the number of microorganisms (especially microscopic fungi) in contaminated soils around the Progress Station. The anthropogenic impact changes the structure of complexes of soil microorganisms. The proportion of mesophilic microorganisms significantly increases under these conditions. Fifty-three micromycete species of 28 genera have been identified in samples of primary soils and anthropogenic substrates. Their diversity decreases from the anthropogenic soils and anthropogenic substrates to the control (“clean”) soils. It is shown that an increase in the number of micromycete species in the area of the polar station results from the invasion of new micromycete species due to human activities. Some native species of micromycetes can adapt to anthropogenic substrates and can be destructors of different introduced materials. Over 56 and 70% among micromycetes from the contaminated soils and anthropogenic substrates, respectively, can be considered potentially pathogenic species. Therefore, invasive processes change the structure of complexes of soil micromycetes, which can serve as an indicator of anthropogenic impact on ecosystems in the Larsemann Hills oasis in East Antarctica.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Abakumov, E.V., Lodygin, E.D., Gabov, D.A., and Krylenkov, V.A., The content of polycyclic aromatic hydrocarbons in the soils of Antarctica, on the example of Russian polar stations, Gig. Sanit., 2014, vol. 93, no. 1, pp. 30–35.

    Google Scholar 

  2. Abakumov, E.V., Parnikoza, I.Y., Vlasov, D.Y., and Lupachev, A.V., Biogenic-abiogenic interaction in Antarctic ornithogenic soils, in Biogenic-Abiogenic Interactions in Natural and Anthropogenic System, Springer, 2016, pp. 237–248. https://doi.org/10.1007/978-3-319-24987-2_19.

  3. Aislabie, J., Jordan, S., Ayton, J., Klassen, J.L., Barker, G.M., and Turner, S., Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica, Can. J. Microbiol., 2009, vol. 55, no. 1, pp. 21–36. https://doi.org/10.1139/W08-126

    CAS  Article  PubMed  Google Scholar 

  4. Arenz, B.E. and Blanchette, R.A., Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys, Soil Biol. Biochem., 2011, vol. 43, no. 2, pp. 308–315. https://doi.org/10.1016/j.soilbio.2010.10.016

    CAS  Article  Google Scholar 

  5. Arenz, B.E., Held, B.W., Jurgens, J.A., Farrell, R.L., and Blanchette, R.A., Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica, Soil Biol. Biochem., 2006, vol. 38, no. 10, pp. 3057–3064. https://doi.org/10.1016/j.soilbio.2006.01.016

    CAS  Article  Google Scholar 

  6. Bargagli, R., Environmental contamination in Antarctic ecosystems, Sci. Total Environ., 2008, no. 400, pp. 212–226.

  7. Brunati, M., Rojas, J.L., Sponga, F., Ciciliato, I., Losi, D., Göttlich, E., de Hoog, S., Genilloud, O., and Marinelli, F., Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes, Mar. Genomics, 2009, vol. 2, no. 1, pp. 43–50. https://doi.org/10.1016/j.margen.2009.04.002

    Article  PubMed  Google Scholar 

  8. Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., and Longino, J.T., Models and estimators linking individual-based and sample based rarefaction, extrapolation and comparison of assemblages, J. Plant Ecol., 2012, vol. 5, no. 1, pp. 3–21.

    Article  Google Scholar 

  9. Connell, L., Redman, R., Craig, S., and Rodriguez, R., Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica, Soil Biol. Biochem., 2006, vol. 38, no. 10, pp. 3083–3094. https://doi.org/10.1016/j.soilbio.2006.02.016

    CAS  Article  Google Scholar 

  10. De Hoog, G.S., Gottlich, E., Platas, G., Genilloud, O., Leotta, G., and Van Brummelen, J., Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica, Stud. Mycol., 2004, vol. 51, pp. 33–76.

    Google Scholar 

  11. De Hoog, G.S., Guarro, J., Gene, J., and Figueras, M.J., Atlas of Clinical Fungi: The Ultimate Benchtool for Diagnostics, Utrecht: Universitat Rovira i Virgili, 2009, 3rd ed.

    Google Scholar 

  12. Duncan, S.M., Farrell, R.L., Thwaites, J.M., Held, B.W., Arenz, B.E., Jurgens, J.A., and Blanchette, R.A., Endoglucanase producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica, Environ. Microbiol., 2006, vol. 8, no. 7, pp. 1212–1219. https://doi.org/10.1111/j.1462-2920.2006.01013.x

    CAS  Article  PubMed  Google Scholar 

  13. Frisvad, J.C., Fungi in cold ecosystems, in Psychrophiles: From Biodiversity to Biotechnology, Berlin–Heidelberg: Springer, 2008, pp. 137–156.

    Google Scholar 

  14. Index Fungorum, 2020. http://www.indexfungorum.org. Accessed March 1, 2020.

  15. Kirtsideli, I.Yu., Abakumov, E.V., Teshebaev, Sh.B., Ze-lenskaya, M.S., Vlasov, D.Yu., Krylenkov, V.A., Rya-busheva, Yu.V., Sokolov, V.T., and Barantsevich, E.P., Microbial communities in the regions of Arctic settlements, Gig. Sanit., 2016, vol. 95, no. 10, pp. 923–929.

    Article  Google Scholar 

  16. Kirtsideli, I.Yu., Vlasov, D.Yu., Barantsevich, E.P., Krylenkov, V.A., and Sokolov, V.T., Complexes of microscopic fungi in soils and soils of the polar Izvestiy TSIK Island (Kara Sea), Mikol. Fitopatol., 2014, vol. 48, no. 6, pp. 365–371.

    Google Scholar 

  17. Kochkina, G.A., Ozerskaya, S.M., Ivanushkina, N.E., Chigineva, N.I., Vasilenko, O.V., Spirina, E.V., and Gilichinsky, D.A., Fungal diversity in the Antarctic active layer, Microbiology, 2014, vol. 83, nos. 1–2, pp. 94–101.

    CAS  Article  Google Scholar 

  18. Lai, X., Cao, L., Tan, H., Fang, S., Huang, Y., and Zhou, S., Fungal communities from methane hydrate-bearing deep-sea marine sediments in south china sea, ISME J., 2007, vol. 1, no. 8, pp. 756–762.

    CAS  Article  Google Scholar 

  19. Loque, C.P., Medeiros, A.O., Pellizzari, F.M., Oliveira, E.C., Rosa, C.A., and Rosa, L.H., Fungal community associated with marine macroalgae from Antarctica, Polar Biol., 2010, vol. 33, no. 5, pp. 641–648. https://doi.org/10.1007/s00300-009-0740-0

    Article  Google Scholar 

  20. Maggi, O., Tosi, S., Angelova, M., Lagostina, E., Fabbri, A.A., Pecoraro, L., Altobelli, E., Picco, A.M., Savino, E., Branda, E., and Turchetti, B., Adaptation of fungi, including yeasts, to cold environments, Plant Biosyst. Int. J. Dealing Asp. Plant Biol., 2013, vol. 147, no. 1, pp. 247–258. https://doi.org/10.1080/11263504.2012.753135

    Article  Google Scholar 

  21. Marfenina, O.E., Antropogennaya ekologiya pochvennykh gribov (Anthropogenic Ecology of Soil Fungi), Moscow: Med. Vsekh, 2005.

  22. Marfenina, O.E., Nikitin, D.A., and Ivanova, A.E., The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (Progress and Russkaya Stations), Eurasian Soil Sci., 2016, vol. 49, no. 8, pp. 934–941. https://doi.org/10.1134/S106422931608007X

    Article  Google Scholar 

  23. Nikitin, D.A., Marfenina, O.E., Kudinova, A.G., Lysak, L.V., Mergelov, N.S., Dolgikh, A.V., and Lupachev, A.V., Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica, Eurasian Soil Sci., 2017, vol. 50, no. 9, pp. 1086–1097.

    Article  Google Scholar 

  24. Onofri, S., Selbmann, L., De Hoog, G.S., Grube, M., Barreca, D., Ruisi, S., and Zucconi, L., Evolution and adaptation of fungi at boundaries of life, Adv. Space Res., 2007, vol. 40, no. 11, pp. 1657–1664. https://doi.org/10.1016/j.asr.2007.06.004

    Article  Google Scholar 

  25. Pestova, N.E., Barantsevich, N.E., Rybkova, N.S., Kozlova, N.S., and Barantsevich, E.P., Investigation of the effectiveness of the method of DNA sequencing using a fragment of the 16s rRNA gene for the identification of microorganisms, Profil. Klin. Med., 2011, no. 4, pp. 57–58.

  26. Pudasaini, S., Wilson, J., Ji, M., van Dorst, J., Snape, I., Palmer, A.S., Burns, B.P., and Ferrari, B.C., Microbial diversity of Browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods, Front. Microbiol., 2017, vol. 8. https://doi.org/10.3389/fmicb.2017.00591

  27. Sanitarno-epidemiologicheskie pravila SP 1.3.2322-08. Bezopasnost’ raboty s mikroorganizmami III–IV grupp patogennosti (opasnosti) i vozbuditelyami parazitarnykh infektsii (Sanitary and Epidemiological Rules SP 1.3.2322-08. Safety of Work with Microorganisms of the III–IV Pathogenicity (Hazard) Groups and Causative Agents of Parasitic Infections), Moscow, 2008.

  28. Santiago, I.F., Soares, M.A., Rosa, C.A., and Rosa, L.H., Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica, Extremophiles, 2015, vol. 19, no. 6, pp. 1087–1097. https://doi.org/10.1007/s00792-015-0781-y

    Article  PubMed  Google Scholar 

  29. Selikhovkin, A.V., Markowskaja, S., Vasaitis, R., Martynov, A.N., and Musolin, D.L., Phytopathogenic fungus Fusarium circinatum and potential for its transmission in Russia by Insects, Russ. J. Biol. Invasions, 2018, vol. 9, pp. 245–252.

    Article  Google Scholar 

  30. Shitikov, V.K., Zinchenko, T.D., and Rozenberg, G.S., Makroekologiya rechnykh soobshchestv: Kontseptsii, metody, modeli (Macroecology of River Communities: Concepts, Methods, and Models), Tolyatti: Kassandra, 2011.

  31. Simon-Nobbe, B., Denk, U., Poll, V., Rid, R., and Breitenbach, M., The spectrum of fungal allergy, Allergy Immunol., 2008, no. 145, pp. 58–86.

  32. Singh, J., Dubey, A.K., and Singh, R.P., Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations, Rev. Environ. Sci. Biotechnol., 2011, vol. 10, no. 1, pp. 63–77. https://doi.org/10.1007/s11157-010-9226-3

    Article  Google Scholar 

  33. Sutton, D.A., Fothergill, A.W., and Rinaldi, M.G., Guide to Clinically Singnificant Fungi, Baltimore: Willians & Wilkins, 1998.

    Google Scholar 

  34. Teshebaev, Sh.B., Remnev, A.S., and Panin, A.L., The microbiological component of soils in the area of the field geological base in the Antarctic, Probl. Arkt. Antarkt., 2016, no. 2, pp. 92–100.

  35. Tosi, S., Casado, B., Gerdol, R., and Caretta, G., Fungi isolated from Antarctic mosses, Polar Biol., 2002, vol. 25, no. 4, pp. 262–268. https://doi.org/10.1007/s00300-001-0337-8

    Article  Google Scholar 

  36. Veselkin, D.V. and Prokina, N.E., Mycorrhiza formation in ash-leaved maple (Acer negundo L.) within the urbanization gradient, Russ. J. Biol. Invasions, 2016, vol. 7, pp. 123–128.

    Article  Google Scholar 

  37. Vlasov, D.Yu., Zelenskaya, M.S., Kirtsideli, I.Yu., Abakumov, E.V., Krylenkov, V.A., and Lukin, V.V., Fungi on natural and anthropogenic substrates in western Antarctica, Mikol. Fitopatol., 2012, vol. 46, no. 1, pp. 20–26.

    Google Scholar 

  38. Waterhouse, E.J., Ross Sea Region: A State of the Environment Report for the Ross Sea Region of Antarctica, Christchurch: New Zealand Antarctic Institute, 2001.

    Google Scholar 

  39. Zelenskaya, M.S., Kirtsideli, I.Yu., Vlasov, D.Yu., Krylenkov, V.A., and Sokolov, V.T., Micromycetes: biodestructors in biogeocenoses of the Arctic, Probl. Reg. Ekol., 2013, no. 5, pp. 135–141.

  40. Zumsteg, A., Luster, J., Göransson, H., Smittenberg, R.H., Brunner, I., Bernasconi, S.M., Zeyer, J., and Frey, B., Bacterial, archaeal and fungal succession in the forefield of a receding glacier, Microb. Ecol., 2012, vol. 63, no. 3, pp. 552–564. https://doi.org/10.1007/s00248-011-9991-8

    Article  PubMed  Google Scholar 

  41. Zvyagintsev, D.V., Metody pochvennoi mikrobiologii i biokhimii (Methods of Soil Microbiology and Biochemistry), Moscow: Mosk. Gos. Univ., 1991.

Download references

ACKNOWLEDGMENTS

We thank the team of the Russian Antarctic Expedition for their assistance in performing the research.

Funding

This study was partially supported by the Russian Foundation for Basic Research (project 18-04-00900. Ornithogenic Antarctic Soils: Formation, Geography, Biogeochemistry, and Bioindication), St. Petersburg State University (Measure 1. Urban Ecosystems of the Arctic Belt of the Russian Federation: Dynamics, State, and Stable Development), as well as by the Basic Research Program of the Presidium of the Russian Academy of Sciences (project “Biodiversity of Natural Systems and Biological Resources of Russia”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Vlasov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals in experiments performed by any of the authors.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vlasov, D.Y., Kirtsideli, I.Y., Abakumov, E.V. et al. Anthropogenic Invasion of Micromycetes to Undisturbed Ecosystems of the Larsemann Hills Oasis (East Antarctica). Russ J Biol Invasions 11, 208–215 (2020). https://doi.org/10.1134/S2075111720030121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111720030121

Keywords:

  • Antarctic ecosystems
  • anthropogenic impact
  • microscopic fungi
  • invasive species
  • soil mycobiota
  • potential pathogens