Skip to main content

High-Precision Navigation Independently of Global Navigation Satellite Systems Data


In recent years, it has become clear that global navigation satellite systems (GNSS) have insufficient immunity to noises. In this regard, the paper discusses possible methods and tools ensuring high-precision navigation measurements without using GNSS, and their current development status.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. Schmidt, G., GPS based navigation systems in difficult environments, Gyroscopy and Navigation, 2019, vol. 10, no. 2, pp. 41–53.

    Article  Google Scholar 

  2. and-fiber-pnt-needed-to-protect-us/.



  5. Blazhnov, B.A., Nesenyuk, L.P., Peshekhonov, V.G. and Starosel’tsev, L.P., Miniature integrated inertial/satellite reference and navigation system, Giroskopiya i navigatsiya, 1998, vol. 20, no. 1, pp. 56–62.

  6. Koenig, S., Rombach, S., Gutmann, W., Jaeckie, A., Weber, C., Ruf, M., Grolle, D. and Rende, J., Towards a navigation grade Si-MEMS gyroscope, 2019 DGON Inertial Sensors and Systems, 2019, Braunschweig, Germany.

  7. Jonson, B. R., Albrecht, C., Braman, T., Christ, K., Duffy, P., Endean, D., Gnerlich, M. and Reinke, J., Development of a navigation-grade MEMS IMU, 2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL).

  8. Golovan, A.A., INS/odometer integration: Positional approach, Gyroscopy and Navigation, 2021, vol. 12, no. 2, pp. 186–194.

    Article  Google Scholar 


  10. Lefevre, H., The fiber optic gyro ‘adventure’ at photonetics, iXsea and now iXblue, Proc. Optical Waveguide and Laser Sensors, 2020, vol. 11405, p. 1140505.

    Google Scholar 

  11. Foloppe, Y. and Lenoir, Y., HRG Crystal TM DUAL CORE: Rebooting the INS revolution, 2019 DGON Inertial Sensors and Systems, IEEE, 2019, pp. 1–14.

    Google Scholar 

  12. Meyer, D. and Larsen, M., Nuclear magnetic resonance gyro for inertial navigation, Gyroscopy and Navigation, 2014, vol. 5, no. 2, pp. 75–82.

    Article  Google Scholar 

  13. Voronov, A.S. and Rivkin, B.S., Gyroscope on de Broglie waves: Intricate things in simple words, Gyroscopy and Navigation, 2021, vol. 12, no. 2, pp. 195–203.

    Article  Google Scholar 

  14. Peshekhonov, V.G., Stepanov, O.A. et al., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Modern Methods and Means for Measuring the Earth’s Gravity Field Parameters), Eds. Peshekhonov, V.G., Stepanov, O.A., St. Petersburg: Concern CSRI Elektropribor, JSC, 2017.

  15. Balov, A.V., Radio navigation, present and future, Gyroscopy and Navigation, 2010, vol. 1, no. 3, pp. 224–235.

    Article  Google Scholar 

  16. Korotonoshko, A.N., Pseudo-satellite navigation of ground transport vehicles, Novosti navigatsii, 2021, no. 1, pp. 20–27.

  17. Minligareev, V.T., Sazonova, T.V., Arutyunyan, D.A., Tregubov, V.V., and Khotenko, E.N., Geophysical support of advanced autonomous magnetometric navigation systems, Gyroscopy and Navigation, 2020, vol. 11, no. 4, pp. 350–356.

    Article  Google Scholar 

  18. Karshakov, E.V., Pavlov, B.V., Tkhorenko, M.Yu., and Papusha, I.A., Promising map-aided aircraft navigation systems, Gyroscopy and Navigation, 2021, vol. 12, no. 1, pp. 38–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. G. Peshekhonov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peshekhonov, V.G. High-Precision Navigation Independently of Global Navigation Satellite Systems Data. Gyroscopy Navig. 13, 1–6 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • GNSS interference
  • integrated INS/GNSS systems
  • autonomous navigation tools
  • radio navigation